Читаем 38 типов задач начальной школы и как их решать полностью

3. Чтобы ответить на вопрос, надо … (тут происходит процесс определения нужной формулы, обычно это самая трудная часть)

4. Можем сразу ответить на вопрос? Нет. Сразу мы не можем ответить на вопрос задачи, так как не знаем…

5. Поэтому в первом действии мы узнаем…

6. Во втором действии мы ответим на вопрос задачи. Для этого…

Сложный алгоритм, но именно так решают задачи младшие школьники! Некоторые делают это очень быстро, а некоторые продумывают каждый шаг. Упростите ребенку решение задач. Станьте для него магом и лучшим проводником по школе.

Нарисуйте вместе с ним треугольник. И впишите в него формулу следующим образом:

Закройте карточкой или рукой то, что нужно найти (например, время) Тогда сразу найдется «нужная формула»

Горизонтальная черта в треугольнике обозначает деление. Вертикальная – умножение. Ребенку можно поставить точку (знак умножения), что будет для него подсказкой. Так подбор правильной формулы для решения задачи на движение становится не только простым, но и интересным ребенку.

Если речь идет о двух, трех движущихся объектах, то треугольник с формулой применяется для каждого в отдельности. Хотя об этом обычно догадываются сами дети. Взаимодействие и обмен полезными техниками между родителями и учениками может помочь ребенку как добиться хороших результатов в учебе, так и улучшить свою самооценку. Используйте техники эффективного обучения, помогайте детям учиться.

Ведь очень часто одно простое действие может убрать непонимание, слезы, истерики, нежелание ребенка учиться, замотивировать его на учебу и показать ему простые и легкие способы решения сложных для него задач.

Итак, для решения простых задач на движение используем помогаторы-треугольники, в которых легко видно зависимость величин друг от друга:

Виды чертежей к задачам на движение

Задачи на движение лучше всего чертить.

Существуют 4 вида схем задач на движение, в зависимости от типа задачи:

На картинке выше показаны основные типы задач на движение. Их мы сейчас и рассмотрим.

Суть решения задач на движение сводится к тому, чтобы правильно отобразить на рисунке, кто-куда-за кем идет, и правильно расставить скорость, время и расстояние, а затем подставить данные в «треугольник».

31. Простые задачи на движение

Расстояние от города до поселка 30 км. Сколько времени потребуется пешеходу, чтобы пройти это расстояние со скоростью 6 км/ч?

Применяем треугольник и узнаем время в пути.

Решение:

30:6=5 (ч)

Ответ: 5 часов.

Варианты задач для тренировки:

Мальчик пробежал 20 м за 10 секунд. С какой скоростью бежал мальчик?

Муха летела со скоростью 5 м/с 15 секунд. Какое расстояние она пролетела?

32. Задачи на встречное движение

Два мальчика одновременно побежали навстречу друг другу по спортивной дорожке, длина которой 300 м. Они встретились через 20 секунд. Первый бежал со скоростью 5 м/с. С какой скоростью бежал второй мальчик?

Важно отметить, чтобы были равные единицы измерения (например как в этой задаче – секунды). Если единицы разные, то обязательно нужно привести их к одной единице измерения.

И начинаем последовательно записывать каждую часть задачи.

Рисуем дорожку, рисуем мальчиков, рисуем стрелочки, как они бегут (навстречу друг другу). Подписываем длину дорожки. Отмечаем место встречи (предполагаемое, можно даже посередине отрезка). Далее обязательно рисуем около человечка стрелочку скорости и обозначаем ту скорость, которая нам известна (5м/с).

Сколько он мог пробежать за 20 секунд? 5*20=100м.

Сколько пробежал второй мальчик за это время?

300—100=200 м

Дальше применяем треугольник-помогатор для вычисления скорости второго мальчика (у нас теперь известны расстояние, которое он пробежал до момента встречи – 100м, и время – 20с)

Решение:

1) 5*20=100 (м.) – пробежал первый

2) 200—100=100 (м) – пробежал второй мальчик

3) 200:20=10 (м/с)

Ответ: скорость второго мальчика 10 м/с.

Все задачи на движение решаются сначала устно, рассуждением! Учтите этот момент.

Варианты задач для тренировки:

Расстояние между селами 48 км. Через сколько часов встретятся два пешехода, которые вышли одновременно навстречу друг другу, если скорость одного 3 км/ч, а другого 5 км/ч?

(Здесь используем формулу: t= s: (v1 + v2)

Перейти на страницу:

Похожие книги

Рассказы о металлах
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов.Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их "планах на будущее" рассказывает эта книга.Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.Иллюстрации Алексея Владимировича Колли.

Сергей Иосифович Венецкий

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Металлургия / Научпоп / Книги Для Детей