Читаем 500 схем для радиолюбителей. Дистанционное управление моделями полностью

В качестве VT1 и VT2 рассмотренных схем можно использовать любые маломощные транзисторы структуры n-p-n, например КТ315, КТ3102. Демпфирующие диоды должны выдерживать ток, не менее тока срабатывания используемого реле. В большинстве случаев можно обойтись диодами типа КД521, КД522. Электронные реле отличаются от рассмотренных тем, что вместо электромеханических реле в коллекторную цепь непосредственно включается коммутируемая нагрузка, например электродвигатели. К транзисторам электронного ключа при этом предъявляются повышенные требования. Их максимально допустимый коллекторный ток должен быть не менее тока, потребляемого нагрузкой.

Кроме того, для повышения коэффициента использования питающего напряжения, сопротивление транзистора в открытом состоянии должно быть как можно меньшим. Тяговые двигатели моделей средних размеров могут потреблять токи до 3–5 А.

Памятуя о том, что выходные токи дешифраторов не превышают единицы миллиампер, необходимо использовать в качестве электронных ключей составные транзисторы, имеющие коэффициент усиления потоку 750—1500.

На рис. 7.2 приведены две практические схемы электронных реле.

Рис. 7.2.Электронные реле

Первый вариант (рис. 7.2, а) подразумевает использование составного транзистора типа КТ829(А — Г), имеющего максимально допустимый ток коллектора 8 А и коэффициент усиления по току не менее 750. Сопротивление участка «коллектор-эмиттер» у него равно 0,6 Ом. Очень выгодно по этому параметру отличается транзистор КТ863А, имеющий сопротивление насыщения всего 0,06 Ом. Однако его коэффициент усиления по току не превышает 100. Для нормальной работы с дешифраторами, собранными на микросхемах КМОП-серии, такой транзистор необходимо включить по схеме, приведенной на рис. 7.2, б. В качестве транзистора VT2 можно использовать КТ315, КТ3102 и им подобные.

Еще заманчивее применение полевых транзисторов с изолированным затвором, номенклатура которых достаточно широка. Их стоковые токи достигают десятков ампер при сопротивлении насыщения в сотые доли ома.

Для обеспечения реверса исполнительного двигателя используют мостовые схемы управления. На рис. 7.3 приведен вариант такой схемы на биполярных транзисторах. При подаче высокого потенциала (+5 В) на вход «вправо» открывается транзистор VT1, и протекающий через него ток открывает транзисторы VT3 и VT6. Последние переходят в режим насыщения, обеспечивая подачу питающего напряжения на двигатель M1. Ток через двигатель протекает, по схеме, слева направо.

Рис. 7.3. Мостовая схема

При подаче высокого потенциала на вход «влево» происходит переключение направления вращения двигателя. При отсутствии входных сигналов все транзисторы заперты, и ток, потребляемый схемой, пренебрежимо мал.

Дроссели Др1, Др2 и конденсатор С1 служат для подавления помех, создаваемых искрящим коллектором двигателя M1.

Дроссели могут быть самодельными. Для их изготовления необходимо намотать по 15 витков провода диаметром 0,25 мм на кольцах с внешним диаметром 7—10 мм из феррита любой марки. Номиналы резисторов указаны для питающего напряжения 6 В. При повышении напряжения необходимо пропорционально ему увеличивать сопротивления всех резисторов, кроме R1—R4.

Схема рассчитана на применение двигателей с током потребления до 8 А. Для менее мощных двигателей, потребляющих ток не более 1–2 А, в мостовом каскаде можно применить транзисторы КТ816 на месте VT3, VT5 и КТ817 на месте VT4, VT6.

Еще удобнее использовать комплементарную пару полевых транзисторов, включив их так, как показано на рис. 7.4, а.

Рис. 7.4. Мостовые схемы на полевых транзисторах

Управляющие сигналы должны иметь амплитуду, равную напряжению питания. Работает схема следующим образом. При отсутствии входных сигналов затворы транзисторов VT1, VT3 соединены с корпусом. Поскольку их истоки подключены к плюсу источника питания, это равносильно подаче на затвор отрицательного напряжения, открывающего транзисторы с каналом р-типа.

Транзисторы VT2 и VT4 имеют канал n-типа, и поэтому подключение их затворов к корпусу обеспечивает им запертое состояние. Двигатель обесточен.

Подача положительного напряжения, например на вход «вправо», закрывает транзистор VT3 и отпирает VT4. Через двигатель протекает ток снизу вверх. При подаче положительного напряжения на вход «влево» открытыми окажутся транзисторы VT2, VT3, и двигатель будет вращаться в обратную сторону. Диоды VD1—VD4 обеспечивают протекание тока самоиндукции, который возникает в обмотках двигателя при отключении входных сигналов.

Полевые транзисторы должны быть обязательно с индуцированными каналами. У таких транзисторов выходной ток начинает протекать при достижении напряжения на затворе некоторой определенной величины. Чтобы в транзисторах не возникали сквозные токи, напряжение отпирания должно быть больше половины напряжения питания.

Перейти на страницу:

Все книги серии Радиолюбитель

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника