Читаем 5a. Электричество и магнетизм полностью

§ 10. Конденсаторы; параллельные пластины

Теперь обратимся к другому роду задач, связанных с про­водниками. Рассмотрим две широкие металлические пластины, параллельные между собой и разделенные узким (по сравнению с их размерами) промежутком. Предположим, что пластины наэлектризованы равными, но противоположными зарядами.


Фиг. 6.12. Плоский конденсатор.

Заряды одной пластины будут притягивать к себе заряды дру­гой и потом равномерно распределятся на внутренней поверх­ности пластин. Пусть поверхностная плотность зарядов на пластинах будет +s и -sсоответственно (фиг. 6.12). Из гл. 5 мы знаем, что поле между пластинами равно s/e0, а поле снаружи пластин равно нулю. Пластины обладают неравными потен­циалами j1 и j2. Их разности V удобно дать особое имя, ее часто называют «напряжением»



[некоторые обозначают буквой V потенциал, мы же его обозна­чили буквой j].


Разность потенциалов V — это работа (на единицу заряда), требуемая для переноса небольшого заряда с одной пластины на другую, так что

(6.33)

где ±Q — суммарный заряд каждой пластины, А — ее пло­щадь, d — щель между пластинами.

Мы видим, что напряжение пропорционально заряду. Эта пропорциональность между V и Q соблюдается для любых двух проводников в пространстве, если на одном из них имеется плюс-заряд, а на другом равный ему минус-заряд. Разность потенциалов между ними, т. е. напряжение, оказывается про­порциональной заряду. (Мы предполагаем, что вокруг нет ни­каких других зарядов.)

Почему возникает эта пропорциональность? Просто из-за принципа наложения. Пусть нам известно решение для одной совокупности зарядов, а потом мы наложим на него другое такое же решение. Заряды удвоятся, поля удвоятся, работа пе­реноса заряда от точки к точке тоже удвоится. По этой причине разность потенциалов двух точек пропорциональна заряду. В частности, разность потенциалов двух проводников пропор­циональна их зарядам. Эту пропорциональность когда-то решили записывать иначе. И стали писать

Q=CV,

где С — постоянное число. Этот коэффициент пропорциональ­ности назвали емкостью, а систему двух проводников — конденсатором. Для нашего конденсатора из параллельных пластин


(параллельные обкладки). (6.34)

Эта формула неточна, потому что поле в противоречии с на­шим предположением на самом деле не всюду однородно. Поле не кончается сразу на ребрах пластин, а похоже скорее на то, что изображено на фиг. 6.13. Суммарный заряд тоже равен не sА, как мы предположили; существует маленькая поправ­ка на краевой эффект. Чтобы знать, какова она, надо точнее рас­считать поле и посмотреть, что происходит на краях. Это очень сложная математическая задача, однако ее можно решить при помощи техники, о которой мы, впрочем, говорить здесь не бу­дем. Расчеты показывают, что плотность зарядов возле края пластин слегка возрастает. Это значит, что емкость пластин чуть выше, чем мы думали. [Хорошее приближение для емкости можно получить, если в уравнении (6.34) принять за А площадь, которую имели бы пластины, если б их расширили на 3/8 расстояния между ними.]

Мы говорили пока только о емкости двух проводников. Иногда люди говорят о емкости предмета самого по себе. Так, говорят, что емкость сферы радиусом а есть 4pe0а. При этом подразумевается, что вторым полюсом является сфера беско­нечного радиуса, т. е. что если на сфере помещен заряд

+ Q, то противоположным зарядом -Q обладает бесконечно боль­шая сфера. Можно говорить также о емкостях и тогда, когда проводников три или больше трех, но обсуждение этого во­проса мы отложим до лучших времен.

Пусть нам необходимо иметь конденсатор очень большой емкости. Большую емкость можно получить, взяв очень большую

площадь и очень малый промежуток. Можно про­ложить алюминиевые лен­ты провощенной бумагой и смотать их в трубку. (Поместив ее в пластмас­совую упаковку, мы полу­чим типичный радиоконденсатор.)



Фиг. 6.13. Электрическое поле у краев двух параллельных пластин.

Зачем они нужны? Они пригодны для того, чтобы накапливать заряд. Если бы мы захотели, например, собрать заряд на каком-то шаре, то его потенциал быстро подско­чил бы, а вскоре так поднялся бы, что заряды стали бы стекать в воздух, и от шара посыпались бы искры. Но если тот же заряд поместить внутрь конденсатора большой емкости, то напряжение близ конденсатора будет очень малым.

Во многих электронных схемах полезно иметь устройство, способное поглощать или выделять большие количества зарядов, заметно не изменяя потенциал. Вот конденсатор (или «емкость»)— как раз такое устройство. Он имеет множество применений и в электронных приборах и в счетных машинах. Там он исполь­зуется для получения определенного изменения в напряжении в ответ на то или иное изменение заряда. С подобным приме­нением мы уже познакомились в вып. 2, гл. 23, когда описыва­ли свойства резонансных контуров.


Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука