Читаем 5a. Электричество и магнетизм полностью

Электроны, пришедшие в данную точку флуоресцирующей поверхности,— это, в очень хорошем приближении, те самые электроны, которые покинули другой конец радиальной линии поля, потому что электроны движутся вдоль линий поля, сое­диняющих кончик иглы с поверхностью сферы. Так что на поверхности мы видим своего рода изображение кончика иглы. А точнее, мы видим картину испускателъной способности по­верхности иглы, т. е. легкости, с которой электроны могут оставить поверхность металлического острия. Если сила разре­шения достаточно высока, то можно рассчитывать разрешить положения отдельных атомов на кончике иглы. Но с электро­нами такого разрешения достичь нельзя по следующим причи­нам. Во-первых, возникает квантовомеханическая дифракция электронных волн, и изображение затуманится. Во-вторых, в результате внутреннего движения в металле электроны имеют небольшую поперечную начальную скорость в момент вырывания из иглы и эта случайная поперечная составляющая ско­рости приведет к размазыванию изображения. В общей слож­ности эти эффекты ограничивают разрешимость деталей вели­чиной порядка 25А.

Если, однако, мы переменим знак напряжения и впустим в колбу немного гелия, то детали разрешены будут лучше. Когда атом гелия сталкивается с кончиком острия, мощное поле срывает с атома электрон, и атом заряжается положительно.


Фие. 6.17. Изображение, полученное ионным микро­скопом.

Затем ион гелия ускоряется вдоль силовой линии, пока не по­падет в экран. Поскольку ион гелия несравненно тяжелее элект­рона, то и квантовомеханические длины волн у него намного меньше. А если к тому же температура не очень высока, то и влияние тепловых скоростей также значительно слабее, чем у электрона. Изображение размазывается меньше и получается куда более резкое изображение кончика иглы. С микроскопом, работающим на принципе ионной эмиссии, удалось добиться увеличения вплоть до 2 000 000 раз, т. е. в десять раз лучше, чем на лучших электронных микроскопах.

На фиг. 6.17 показано, что удалось получить на таком мик­роскопе, применив вольфрамовую иглу. Центры атомов вольфра­ма ионизуют атомы гелия чуть иначе, чем промежутки между атомами вольфрама. Расположение пятен на флуоресцирующем экране демонстрирует расстановку отдельных атомов на воль­фрамовом острие. Почему пятна имеют вид колец, можно по­нять, если представить себе большой ящик, набитый шарами, уложенными в прямоугольную сетку и образующими таким обра­зом кубическую решетку. Эти шары — как бы атомы в металле. Если вы из этого ящика вырежете примерно сферическую часть, то увидите картину колец, характерную для атомной структуры. Ионный микроскоп впервые снабдил человечество средством видеть атомы. Замечательное достижение, да еще полученное с таким простым прибором.

*См. статью Мюллера [Е. W. Mueller, The field-ion microscope, Advances in Electronics and Electron Physics, 13, 83 (I960)].


Глава 7

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ (продолжение)


§1.Методы определения электростати­ческого поля

§2.Двумерные поля; функции комплексного переменного

§З.Колебания плазмы

§4.Коллоидные частицы в электролите

§5.Электростати­ческое поле сетки


§ 1. Методы определения электростатического поля

В этой главе мы продолжим рассмотрение характеристик электрических полей в различ­ных условиях. Сперва мы опишем один из наи­более разработанных методов расчета полей в присутствии проводников. Мы не рассчиты­ваем, конечно, что эти усовершенствованные методы будут вами тотчас усвоены. Но вам дол­жно быть интересно получить какое-то пред­ставление о характере задач, которые удается решать при помощи техники, излагаемой в спе­циальных, более глубоких курсах. Затем мы приведем два примера, в которых нет ни за­ранее фиксированных распределений зарядов, ни растекания зарядов по проводнику, а вместо этого распределение определяют другие физи­ческие законы.

Как мы выяснили в гл. 6, задача об электро­статическом поле решается очень просто, когда распределение зарядов оговорено заранее; ос­тается только взять интеграл. Когда же име­ются проводники, то возникают усложнения, потому что распределение зарядов на провод­никах с самого начала неизвестно; заряды вынуждены сами распределять себя по поверх­ности проводника так, чтобы весь проводник приобрел одинаковый потенциал. Эти задачи так просто не решаются.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука