Читаем 5a. Электричество и магнетизм полностью

Значит, всегда, отправившись от какой угодно обычной функции, можно прийти к двум функциям U (х, у) и V (х, у), которые обе есть решения двумерного уравнения Лапласа. Каждая функция представляет некоторый электростатический потенциал. Любая выбранная нами функция F(з) обязана снаб­дить нас решением какой-то задачи из электростатики, вернее даже двух задач, потому что решением является как U, так и V. Так можно выписать сколько угодно решений: просто напридумывать множество функций и останется только найти задачи с такими решениями. Такой подход к задачам вполне допустим, хоть он и производится задом наперед.

Для примера посмотрим, к какой физической задаче приве­дет нас функция Р(з)=з2. Из нее мы получаем две потенциаль­ные функции (7.5) и (7.6). Чтобы увидеть, какую задачу решает функция U, мы найдем эквипотенциальные поверхности, пола­гая V равным постоянному числу А:

х22 = А.

Это уравнение прямоугольной гиперболы. Перебирая разные значения А, мы получаем семейство гипербол, начерченное на фиг. 7.1. Когда A=0, то гиперболы вырождаются в пару диагоналей, проходящих через начало.

Такое семейство эквипотенциальных поверхностей встре­чается в нескольких физических задачах. В одной из них оно изображает детали структуры поля возле точки между двумя одинаковыми точечными зарядами.



Фиг. 7.1. Два семейства ортогональных кривых, которые могут представлять собой эквипотенциаль­ные линии двумерного электростатического поля.

В другой оно изображает поле внутри прямого угла, образованного двумя проводящими плоскостями. Если есть два электрода, изогнутых так, как по­казано на фиг. 7.2, и имеющих разные потенциалы, то поле внутри угла С будет выглядеть в точности так же, как поле около начала координат на фиг. 7.1.


Фиг. 7.2. Поле возле точки С такое же, как на фиг. 7.1.



Фиг. 7.3. Поле квадрупольной линзы.

Сплошные линии — это эквипотенциальные поверхности, а пересекающие их штрихо­вые — это линии поля Е. Вблизи острия или выступа электри­ческое поле повышается, а возле впадины или отверстия оно слабеет.


Найденное нами решение отвечает также гиперболическому электроду, помещенному около прямого угла, или двум гипер­болам при соответствующих потенциалах. Заметьте, что поле фиг. 7.1 имеет интересное свойство. Составляющая х электри­ческого поля Е дается выражением

т. е. электрическое поле пропорционально расстоянию от оси координат. Этот факт был использован, чтобы создать устрой­ство (называемое квадрупольной линзой), необходимое для фокусирования пучков частиц (см. вып. 6, гл. 29, § 9). Фокуси­рующее поле обычно получают с помощью четырех гипербо­лических электродов, изображенных на фиг. 7.3. Проводя здесь линии электрического поля, мы просто перечертили с фиг. 7.1 семейство штриховых кривых V=const. Эти линии достались нам совершенно бесплатно! Кривые V=const перпендикулярны к кривым U=const, как это следует из уравнений (7.7) и (7.8). Как только мы выбираем функцию F(з), то получаем из U и V сразу же эквипотенциальные линии и линии поля. Мы дав­но знаем, что можно решить на выбор любую из двух задач, смотря по тому, какое семейство кривых мы примем за экви­потенциальное.

Другим примером послужит функция


(7.11)

Если мы напишем



где


и



то


откуда следует



Кривые U (х, у) =А и V (х, у) = В, где U и V взяты из уравнения (7.12), проведены на фиг. 7.4. И здесь тоже можно назвать немало случаев, описываемых этими полями. Один из самых интересных — это поле у края тонкой пластинки. Если линия В=0 направо от оси у изображает тонкую заряженную пластину, то линии поля близ нее даются кривыми с различными А.


Фиг. 7.4. Кривые постоянных U(x, у) и V(x, у) ив уравнения (7.12).



Фиг. 7.5. Электрическое поле возле края тонкой за­земленной пластины.

Физическая картина показана на фиг. 7.5. Дальнейшие примеры — это функция


(7.13)

дающая нам поле снаружи прямого угла, функция


(7.14)

дающая поле заряженной нити, и функция


(7.15)

изображающая поле двумерного аналога электрического ди­поля, т. е. двух параллельных прямых, заряженных противо­положным знаком и помещенных вплотную друг к другу.

Больше этим вопросом в нашем курсе мы заниматься не бу­дем; мы должны только подчеркнуть, что, хотя техника комп­лексных переменных часто оказывается очень мощной, она ограничена все же только двумерными задачами; к тому же это все-таки косвенный метод.

§ 3. Колебания плазмы

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука