Поскольку последние три слагаемых в формуле (25.7) представляют просто трехмерное скалярное произведение, то часто удобнее принять такую запись:
Очевидно, что введенную выше четырехмерную длину можно записать как аm
аm:
(25.8)
Но иногда удобно эту величину записать как а
2m:
Продемонстрируем теперь плодотворность четырехмерного скалярного произведения. Антипротоны (р')
получают на больших ускорителях из реакцииИначе говоря, высокоэнергетический протон сталкивается с покоящимся протоном (например, с помещенной в пучок водородной мишенью), и если падающий протон обладает достаточной энергией, то вдобавок к двум первоначальным протонам может родиться пара протон—антипротон.
Какой энергией должен обладать падающий протон, чтобы эта реакция стала энергетически возможной?
Ответ легче всего получить, рассмотрев эту реакцию в системе центра масс (ц. м.) (фиг. 25.1). Назовем падающий протон протоном а, а его четырехимпульс обозначим через р
am. Аналогично, протон мишени назовем b, а его четырехимпульс обозначим через рbm. Если энергии падающего протона как раз достаточно для реакции, то в конечном состоянии (т. е. в состоянии после соударения) образуется система, содержащая три протона и антипротон, покоящиеся в системе ц. м. Если энергия падающего протона будет несколько выше, то частицы в конечном состоянии вылетят с некоторой кинетической энергией и будут разлетаться в стороны; если же она немного ниже, то ее будет недостаточно для образования четырех частиц.Пусть р
сm — полный четырехимпульс всей системы в конечном состоянии, тогда, согласно закону сохранения энергии и
а комбинируя эти два выражения, можно написать
(25.9)
Теперь еще одно важное обстоятельство: поскольку мы получили уравнение для четырехвекторов, то оно должно выполняться в любой инерциальной системе. Этим фактом можно воспользоваться для упрощения вычислений. Напишем длины каждой из частей (25.9), которые, разумеется, тоже должны быть равны друг другу, т. е.
(25.10)
Так как р
сm рсm — инвариант, то можно вычислить его в какой-то одной системе координат. В системе ц. м. временная компонента рсm равна энергии покоя четырех протонов, т. е. 4М, а пространственная часть р равна нулю, так что рсm=(4М, 0). При этом мы воспользовались равенством масс протона и антипротона, обозначив их одной буквой М.Таким образом, уравнение (25.10) принимает вид
(25.11)
Произведения ра
mраm и pbmpbm, вычисляются очень быстро: «длина» четырехвектора импульса любой частицы равна просто квадрату ее массы:Это можно доказать прямыми вычислениями или, несколько более эффектно, простым замечанием, что в системе покоя
частицы рm=(М, 0), а следовательно, рmрm=М2. А так как это инвариант, то он равен М2 в любой системе отсчета. Подставляя результаты в уравнение (25.11), мы получаем
или
(25.12)
Теперь можно вычислить ра
mрbmв лабораторной системе. В этой системе четырехвектор рам= (Еа, ра), а рbm=(М, 0), ибо он описывает покоящийся протон. Итак, раmрbmдолжно быть равно МЕа, а мы знаем, что скалярное произведение — это инвариант, поэтому оно должно быть равно значению, найденному нами в (25.12). В результате получается
Полная
энергия падающего протона должна быть по меньшей мере равна 1М (что составляет около 6,6 Гэв, так как М=938 Мэв) или после вычитания массы покоя М получаем, что кинетическая энергия должна быть равна по меньшей мере 6 М (около 5,6 Гэв). Именно с тем, чтобы иметь возможность производить антипротоны, бетатрон в Беркли проектировался на кинетическую энергию ускоренных протонов около 6.2 Гэв.
Скалярное произведение — инвариант, поэтому полезно знать его величину. Что, например, можно сказать о «длине» четырехвектора скорости um
um?
т. е. um
— единичный четырехвектор.§ 3. Четырехмерный градиент
Следующей величиной, которую нам следует обсудить, является четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования д/дх, д/ду, d/dz
преобразуются подобно трехмерному вектору и называются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмерным градиентом должны быть (d/dt, д/дх, д/ду d/dz), но это неверно.Чтобы обнаружить ошибку, рассмотрим скалярную функцию, которая зависит только от х
и t. Приращение j при малом изменении t на Dt и постоянном х равно
(25.13)
С другой стороны, с точки зрения движущегося наблюдателя
Используя уравнение (25.1), мы можем выразить Dх'
и Dt' через Dt. Вспоминая теперь, что величина х постоянна, так
что Dx=0, мы пишем
Таким образом,
Сравнивая этот результат с (25.13), мы узнаем, что
(25.14)
Аналогичные вычисления дают
(25.15)
Теперь вы видите, что градиент получился довольно странным. Выражения для х
и t через х' и t' [полученные решением уравнений (25.1)] имеют вид