Читаем 8a. Квантовая механика I полностью

Если и существует какое-то место, где есть шанс проверить главные принципы квантовой механики самым прямым обра­зом — бывает ли суперпозиция амплитуд или не бывает,— то оно именно здесь. Несмотря на то что этот эффект был предска­зан уже несколько лет тому назад, до сих пор достаточно ясного опытного определения еще не было. Имеются некоторые грубые результаты, указывающие, что значение a не равно нулю и что эффект действительно наблюдается: они свидетельствуют, что a по порядку величины равно b. И это все, что мы знаем из эксперимента. Было бы замечательно, если бы удалось точно проверить и посмотреть, действительно ли работает принцип суперпозиции в этом таинственном мире странных частиц — с неизвестными поводами для распадов и неизвестным поводом существования странности.

Анализ, который мы только что привели,— характерный пример того, как сегодня используется квантовая механика, чтобы разгадать странные частицы. Во всех сложных теориях, о которых вы, быть может, слышали, нет ничего сверх этого элементарного фокуса, использующего принципы суперпозиции и другие принципы квантовой механики того же уровня. Неко­торые утверждают, что у них есть теории, с помощью которых можно подсчитать b и a или по крайней мере a при данном b. Но эти теории совершенно бесполезны. Например, теория, предсказывающая значение а при данном b, говорит, что a должно быть бесконечным. Система уравнений, из которой они исходят, включает два p-мезона и затем возвращается от двух p-мезонов обратно к K0-мезону и т. д. Если все выкладки про­делать, то действительно возникает пара уравнений, похожих на те, что у нас получались, но, поскольку у двух p-мезонов имеется бесконечно много состояний, зависящих от их импуль­сов, интегрирование по всем возможностям приводит к a, рав­ному бесконечности. А природное a не бесконечно. Значит, динамические теории неверны. На самом деле чрезвычайно поразительно, что единственные явления, которые могут быть в мире странных частиц предсказаны, вытекают из принципов квантовой механики на том уровне, на котором вы их сейчас изучаете.

§ 6. Обобщение на системы с N состояниями

Мы покончили с системами с двумя состояниями, рассказав все, что хотелось. В дальнейших главах мы перейдем к изуче­нию систем с большим числом состояний. Расширение на систе­мы с N состояниями идей, разработанных для двух состояний, проходит довольно просто. Это делается примерно так.

Если система обладает N различными состояниями, то всякое состояние |y(t)>можно представить как линейную комбина­цию произвольной совокупности базисных состояний |t>, где i=l, 2, 3, . . ., N:

Коэффициенты Ci(t)это амплитуды <i|y(t)>. Поведение амплитуд Сiво времени направляется уравнениями

где энергетическая матрица Hijописывает физику задачи. С виду она такая же, как и для двух состояний. Но только теперь и i, и j должны пробегать по всем N базисным состоя­ниям, и энергетическая матрица Hij(или, если вам больше нравится, гамильтониан) — это теперь матрица NXN, состоя­щая из N2чисел. Как и прежде, Hij=Hji (до тех пор, пока частицы сохраняются) и диагональные элементы Hiiсуть ве­щественные числа.

Мы нашли общее решение для всех С в системе с двумя со­стояниями, когда энергетическая матрица постоянна (не зави­сит от t). Точно так же нетрудно решить и уравнение (9.58) для системы с N состояниями, когда Н не зависит от времени. Опять мы начинаем с того, что ищем возможное решение, в кото­ром у всех амплитуд зависимость от времени одинакова. Мы про­буем

Если все эти Ciподставить в (9.58), то производные dCi(t)/dt превращаются просто в (-i/h)ECi. Сокращая повсюду на общую экспоненту, получаем

Эта система N линейных алгебраических уравнений для N неизвестных a1 а2, . . ., аn;решение у нее бывает только тогда, когда вам сильно повезет, когда определитель из коэффициентов при всех а равен нулю. Но не нужно чересчур умничать: можете просто начать их решать любым способом, и вы сразу увидите, что решить их удается лишь при некоторых значениях E. (Вспомните, что единственная величина, которая в этих уравне­ниях подлежит подгонке, это Е.)

Если, впрочем, вы хотите, чтобы все было по форме, пере­пишите (9.60) так:

Затем примените правило (если оно вам знакомо), что эти урав­нения будут иметь решения лишь для тех значений Е, для кото­рых

Каждый член в детерминанте — это просто Hijи только из диагональных отнято Е. Иначе говоря, (9.62) означает просто

Это, конечно, всего-навсего особый способ записывать алгебраи­ческие уравнения для Е, складывая вереницы членов, пере­множаемых в определенном порядке. Эти произведения дадут все степени Е вплоть до EN.

Значит, у нас есть многочлен N-йстепени, который равняется нулю. У него, вообще говоря, есть N корней. (Нужно помнить, однако, что некоторые из них могут быть кратными корнями; это значит, что два или более корней могут быть равны друг другу.) Обозначим эти N корней так:

Перейти на страницу:

Похожие книги