Если и существует какое-то место, где есть шанс проверить главные принципы квантовой механики самым прямым образом — бывает ли суперпозиция амплитуд или не бывает,— то оно именно здесь. Несмотря на то что этот эффект был предсказан уже несколько лет тому назад, до сих пор достаточно ясного опытного определения еще не было. Имеются некоторые грубые результаты, указывающие, что значение a не равно нулю и что эффект действительно наблюдается: они свидетельствуют, что a по порядку величины равно b. И это все, что мы знаем из эксперимента. Было бы замечательно, если бы удалось точно проверить и посмотреть, действительно ли работает принцип суперпозиции в этом таинственном мире странных частиц — с неизвестными поводами для распадов и неизвестным поводом существования странности.
Анализ, который мы только что привели,— характерный пример того, как сегодня используется квантовая механика, чтобы разгадать странные частицы. Во всех сложных теориях, о которых вы, быть может, слышали, нет ничего сверх этого элементарного фокуса, использующего принципы суперпозиции и другие принципы квантовой механики того же уровня. Некоторые утверждают, что у них есть теории, с помощью которых можно подсчитать b и a или по крайней мере a при данном b. Но эти теории совершенно бесполезны. Например, теория, предсказывающая значение а при данном b, говорит, что a должно быть бесконечным. Система уравнений, из которой они исходят, включает два p-мезона и затем возвращается от двух p-мезонов обратно к K
0-мезону и т. д. Если все выкладки проделать, то действительно возникает пара уравнений, похожих на те, что у нас получались, но, поскольку у двух p-мезонов имеется бесконечно много состояний, зависящих от их импульсов, интегрирование по всем возможностям приводит к a, равному бесконечности. А природное a не бесконечно. Значит, динамические теории неверны. На самом деле чрезвычайно поразительно, что единственные явления, которые могут быть в мире странных частиц предсказаны, вытекают из принципов квантовой механики на том уровне, на котором вы их сейчас изучаете.§ 6. Обобщение на системы с N состояниями
Мы покончили с системами с двумя состояниями, рассказав все, что хотелось. В дальнейших главах мы перейдем к изучению систем с большим числом состояний. Расширение на системы с N
состояниями идей, разработанных для двух состояний, проходит довольно просто. Это делается примерно так.Если система обладает N
различными состояниями, то всякое состояние |y(t)>можно представить как линейную комбинацию произвольной совокупности базисных состояний |t>, где i=l, 2, 3, . . ., N:
Коэффициенты C
i(t) — это амплитуды <i|y(t)>. Поведение амплитуд Сiво времени направляется уравнениями
где энергетическая матрица H
ijописывает физику задачи. С виду она такая же, как и для двух состояний. Но только теперь и i, и j должны пробегать по всем N базисным состояниям, и энергетическая матрица Hij(или, если вам больше нравится, гамильтониан) — это теперь матрица NXN, состоящая из N2чисел. Как и прежде, Hij=Hji (до тех пор, пока частицы сохраняются) и диагональные элементы Hiiсуть вещественные числа.Мы нашли общее решение для всех С
в системе с двумя состояниями, когда энергетическая матрица постоянна (не зависит от t). Точно так же нетрудно решить и уравнение (9.58) для системы с N состояниями, когда Н не зависит от времени. Опять мы начинаем с того, что ищем возможное решение, в котором у всех амплитуд зависимость от времени одинакова. Мы пробуем
Если все эти C
iподставить в (9.58), то производные dCi(t)/dt превращаются просто в (-i/h)ECi. Сокращая повсюду на общую экспоненту, получаем
Эта система N
линейных алгебраических уравнений для N неизвестных a1 а2, . . ., аn;решение у нее бывает только тогда, когда вам сильно повезет, когда определитель из коэффициентов при всех а равен нулю. Но не нужно чересчур умничать: можете просто начать их решать любым способом, и вы сразу увидите, что решить их удается лишь при некоторых значениях E. (Вспомните, что единственная величина, которая в этих уравнениях подлежит подгонке, это Е.)Если, впрочем, вы хотите, чтобы все было по форме, перепишите (9.60) так:
Затем примените правило (если оно вам знакомо), что эти уравнения будут иметь решения лишь для тех значений Е,
для которых
Каждый член в детерминанте — это просто H
ijи только из диагональных отнято Е. Иначе говоря, (9.62) означает просто
Это, конечно, всего-навсего особый способ записывать алгебраические уравнения для Е,
складывая вереницы членов, перемножаемых в определенном порядке. Эти произведения дадут все степени Е вплоть до EN.Значит, у нас есть многочлен N-
йстепени, который равняется нулю. У него, вообще говоря, есть N корней. (Нужно помнить, однако, что некоторые из них могут быть кратными корнями; это значит, что два или более корней могут быть равны друг другу.) Обозначим эти N корней так: