§ 1. Электрическое дипольное излучение
§ 2. Рассеяние света
§ 3. Аннигиляция позитрония
§ 4. Матрица поворота для произвольного спина
§ 5. Измерения ядерного спина
§ 6. Сложение моментов количества движения
Добавление 1. Вывод матрицы поворота
Добавление 2. Сохранение четности при испускании фотона
§ 1. Электрическое дипольное излучение
В предыдущей главе мы развили представления о сохранении момента количества движения в квантовой механике и показали, как ими можно воспользоваться для предсказания углового распределения протонов при распаде L0
-частицы. Теперь мы хотим добавить еще несколько иллюстраций тех следствий, которые вытекают из сохранения момента количества движения в атомных системах. Первым примером послужит излучение света атомом. Сохранение момента количества движения (наряду с другими обстоятельствами) определит поляризацию и угловое распределение испускаемых фотонов.Пусть имеется атом в возбужденном состоянии с определенным моментом количества движения, скажем со спином, равным 1; он, излучая фотон, переходит к состоянию с моментом нуль при более низкой энергии. Задача в том, чтобы представить угловое распределение и поляризацию фотонов. (Она очень похожа на задачу о распаде L0
-частицы, но только теперь спин равен не 1/2, a 1.) Раз у возбужденного состояния спин равен единице, то для z-компоненты момента имеются три возможности. ЗначениеОтвета на этот вопрос мы не знаем. Но зато мы знаем, что правополяризованный по кругу свет уносит вдоль направления своего распространения одну единицу момента количества движения. Значит, после излучения фотона положение станет таким, как показано на фиг. 16.1, б, т. е. атом остался с нулевым моментом относительно оси z, поскольку мы предположили, что низшее состояние атома имеет спин нуль. Обозначим амплитуду такого события буквой
Амплитуду такого события обозначим буквой
Далее, можно показать, что
На фиг. 16.3,
Фиг, 16.3. Если процесс (а) преобразовать путем инверсии относительно центра атома, он станет выглядеть, как (б).
Заметьте, что направление вращения атома не изменилось. В обращенной системе (фиг. 16.3, б) получается атом с