Когда мы изучали сверхтонкую структуру атома водорода в гл. 10 (вып. 8), нам пришлось рассчитывать внутренние состояния системы, составленной из двух частиц — электрона и протона — со спинами 1
/2. Мы нашли, что четверка возможных спиновых состояний такой системы может быть разбита на две группы — на тройку состояний с одной энергией, которая во внешнем поле выглядела как частица со спином 1, и на одно оставшееся состояние, которое вело себя как частица со спином 0. Иначе говоря, объединяя две частицы со спином 1/2, можно образовать систему, «полный спин» которой равен либо единице, либо нулю. В этом параграфе мы хотим рассмотреть на более общем уровне спиновые состояния системы, составленной из двух частиц с произвольными спинами. Это другая важная проблема, связанная с моментами количества движения квантовомеханической системы.Перепишем сперва результаты гл. 10 для атома водорода в форме, которая позволит распространить их на более общий случай. Мы начали с двух частиц, которые теперь обозначим так: частица а
(электрон) и частица b (протон). Спин частицы а был равен ja(=1/2), a z-компонента момента количества движения mамогла принимать одно из нескольких значений (на самом деле два, а именно mа=+1/2 или mа=-1/2). Точно так же спиновое состояние частицы b описывалось ее спином jb и z-компонентой момента количества движения mb. Из всего этого можно было составить несколько комбинаций спиновых состояний двух частиц. Например, из частицы а с mа= 1/2 и частицы b с mb=-1/2 можно было образовать состояние | а, +1/2; b, -1/2>. Вообще, объединенные состояния образовывали систему, у которой «спин системы», или «полный спин», или «полный момент количества движения» J мог быть равен либо единице, либо нулю, а z-компонента момента количества движения М могла равняться +1, 0 или -1 при J=1 и нулю при J=0. На этом новом языке формулы (10.41) и (10.42) можно переписать так, как показано в табл. 16.3.Левый столбец таблицы описывает составное состояние через его полный момент количества движения J
и z-компоненту М.Таблица 16.3
· СОСТАВЛЕНИЕ МОМЕНТОВ КОЛИЧЕСТВА ДВИЖЕНИЯ ДВУХ ЧАСТИЦ СО СПИНОМ 1/2,
Правый столбец показывает, как составляются эти состояния из значений т
двух частиц а и b.Мы хотим обобщить этот результат на состояния, составленные из двух объектов а
и b с произвольными спинами jа и jb. Начнем с разбора примера, когда jа=1/2 и jb=1, а именно с атома дейтерия, в котором частица а — это электрон е, а частица b — ядро, т. е. дейтрон d. Тогда ja=je=1/2. Дейтрон образован из одного протона и одного нейтрона в состоянии с полным спином 1, так что jb=jd=1. Мы хотим рассмотреть сверхтонкие состояния дейтерия, как мы сделали это для водорода. Поскольку у дейтрона может быть три состояния, mb= md=+1, 0, -1, а у электрона — два, mа=mе=+1/2, -1/2, то всего имеется шесть возможных состояний, а именно (используется обозначение| е, m
e; d, md>):
Обратите внимание, что мы разверстали состояния согласно значениям суммы m
eи mdв порядке ее убывания.Спросим теперь: что случится с этими состояниями, если спроецировать их в другую систему координат? Если эту новую систему просто повернуть вокруг оси z
на угол j, то состояние | е, me; d, md>умножается на
(Состояние можно считать произведением |е, m
е>|d, md>, и каждый вектор состояния независимо привнесет свой собственный экспоненциальный множитель.) Множитель (16.43) имеет форму еiMj, поэтому z-компонента момента количества движения у состояния | е, mе; d, md>окажется равнойM=m
e+md. (16.44)Иначе говоря, z-компонента полного момента количества движения есть сумма z-компонент моментов количества движения отдельных частей.
Значит, в перечне состояний (16.42) верхнее состояние имеет М
=+3/2, Два следующих М=+1/2, затем два М=-1/2и последнее состояние М=-3/2. Мы сразу же видим, что одной из возможностей для спина J объединенного состояния (для полного момента количества движения) должно быть 3/2, это потребует четырех состояний с М= +3/2, +1/2, -1/2 и - 3/2. На М=+3/2 есть только один кандидат, и мы сразу видим, что
Но что является состоянием |J
=3/2, М=+1/2>? Кандидатов здесь два, они стоят во второй строчке (16.42), и всякая их линейная комбинация тоже даст М=+1/2. Значит, в общем случае можно ожидать, что
где a и b — два числа. Их
именуют коэффициенты Клебша — Гордона. Найти их и будет нашей очередной задачей.И мы их легко найдем, если просто вспомним, что дейтрон состоит из нейтрона и протона, и в явном виде распишем состояния дейтрона, пользуясь правилами табл. 16.3. Если это проделать, то перечисленные в (16.42) состояния будут выглядеть так, как показано в табл. 16.4.