Это и есть уравнение Шредингера для частицы с зарядом q
(нерелятивистской, без спина), движущейся в электромагнитном поле А, j.Чтобы стало ясно, что оно правильно, я хочу проиллюстрировать это простым примером, когда вместо непрерывного случая имеется линия атомов, расставленных на оси x
на расстоянии b друг от друга, и существует амплитуда —К того, что электрон перепрыгнет в отсутствие поля от одного атома к другому. Тогда, согласно уравнению (19.1), если имеется вектор-потенциал Аx(х, t) в x-направлении, то амплитуда перескока по сравнению с тем, что было раньше, изменится, ее придется домножить на exp[(iq/h)Axb] — экспоненту с показателем, равным произведению iq/h на векторный потенциал, проинтегрированный от одного атома до другого. Для простоты мы будем писать (q/h) Axєf(x), поскольку Ах, вообще говоря, зависит от х. Если обозначить через С(х)єСnамплитуду того, что электрон обнаружится возле атома n, расположенного в точке х, то скорость изменения этой амплитуды будет даваться уравнением
В нем три части. Во-первых, у электрона, который находится в точке х,
есть некоторая энергия Е0. Это, как обычно, дает член Е0С(х). Затем имеется член — КС(х+b), т. е. амплитуда того, что электрон от атома n+1, расположенного в х+b, отпрыгнул на шаг назад. Однако если это происходит в присутствии векторного потенциала, то фаза амплитуды обязана сместиться согласно правилу (19.1). Если Ахна расстоянии между соседними атомами заметно не изменяется, то интеграл можно записать попросту в виде значения Ахпосредине, умноженного на расстояние. Итак, произведение (iq/h) на интеграл равно ibf(x+b/2). А раз электрон прыгал назад, я этот сдвиг фазы отмечаю знаком минус. Это дает вторую часть. И точно так же имеется некоторая амплитуда того, что будет прыжок вперед, но на этот раз уже берется векторный потенциал с другой стороны от х, на расстоянии b/2, и умножается на расстояние b. Это дает третью часть. В сумме получается уравнение для амплитуды того, что частица в поле, характеризуемом векторным потенциалом, окажется в точке х.Но дальше мы знаем, что если функция С
(х)достаточно плавная (мы берем длинноволновый предел) и если мы сдвинем атомы потеснее, то уравнение (14.4) (стр. 80) будет приблизительно описывать поведение электрона в пустоте. Поэтому следующим шагом явится разложение обеих сторон (19.4) по степеням b, считая b очень малым. К примеру, если b=0, то правая часть будет равна просто (Е0-2К)С(х), так что в нулевом приближении энергия равняется Е0-2К. Затем пойдут степени b, но из-за того, что знаки показателей экспонент противоположны, останутся только четные степени. В итоге, если вы разложите в ряд Тэйлора С(х), f(x) и экспоненты и соберете затем члены с b2, вы получите
(штрихи обозначают дифференцирование по х).
Это ужасное нагромождение разных букв выглядит очень сложно. Но математически оно в точности совпадает с
Вторая скобка, действуя на С
(х), даст С'(х)минус if(x)C(x). Первая скобка, действуя на эти два члена, даст член с С", члены с первыми производными f(x) и с первой производной С(х). А теперь вспомните, что решения в нулевом магнитном поле (см. гл. 11, §3) изображают частицу с эффективной массой mэфф, даваемой формулойKb
2=h/mэффЕсли вы затем положите Е
0=+2К и снова вернетесь к f(x)=(q/h)Ax, то легко убедитесь, что (19.6) это то же самое, что первая часть (19.3). (Происхождение члена с потенциальной энергией хорошо известно, и я не буду им заниматься.) Утверждение (19.1) о том, что векторный потенциал умножает все амплитуды на экспоненциальный множитель, равнозначно правилу, что оператор импульса (h/i)Сзаменяется на (h/i)С-qA, как мы и сделали в уравнении Шредингера (19.3).§ 2. Уравнение непрерывности для вероятностей