Читаем 9. Квантовая механика II полностью

Теперь будем рассматривать левое

Вынесем его за знак суммы и напишем

Это выражение имеет вид , где |j> — некоторое «придуманное» состояние, определяемое равенством

Иными словами, это то состояние, которое у вас получится, если вы возьмете каждое базисное состояние |hi> в количестве

Еii|y>.

Но вспомним теперь, что такое |hi>. Состояния |hi> считаются стационарными, т. е. для каждого из них

А раз Еiпросто число, то правая часть совпадает с |hi>Еi, а сумма в (18.16) — с

Теперь приходится просуммировать по i общеизвестную комби­нацию, приводящую к единице:

Чудесно, уравнение (18.16) совпало с

Средняя энергия состояния |y> записывается, стало быть, в очень привлекательном виде

Чтобы получить среднюю энергию, подействуйте на |y> опе­ратором Н^ и затем умножьте на какую угодно совокупность базис­ных состояний, и, если мы знаем гамильтонову матрицу Нijдля этой совокупности, мы уже сможем узнать среднюю энер­гию. Уравнение (18.18) говорит, что при любой совокупности базисных состояний |i> средняя энергия может быть вычисле­на из

где амплитуды <i|H|j> как раз и есть элементы матрицы Hij. Проверим это на том частном примере, когда состояния |i> суть состояния с определенной энергией. Для них H^|j>=e|j>, так что <i|H^|j>=Ejdijи

что вполне естественно.

Уравнение (18.19) можно, кстати, обобщить и на другие физические измерения, которые вы в состоянии выразить в виде оператора. Например, пусть L^zесть оператор z-компоненты момента количества движения L. Средняя z-компонента для со­стояния |y> равна

Один из способов доказательства этой формулы — придумать такую задачу, в которой энергия пропорциональна моменту ко­личества движения. Тогда все рассуждения просто повторятся. Подытоживая, скажем, что если физически наблюдаемая величина А связана с соответствующим квантовомеханическим оператором А^, то среднее значение А в состоянии |y> дается формулой

Под этим подразумевается

где

§ 3. Средняя энергия атома

Пусть мы хотим узнать среднюю энергию атома в состоянии, описываемом волновой функцией y(r); как же ее найти? Рассмот­рим сперва одномерную задачу, когда состояние |y> опреде­ляется амплитудой <x|y>=y (x). Нас интересует частный слу­чай применения уравнения (18.19) к координатному представ­лению. Следуя нашей обычной процедуре, заменим состояния |i> и |j> на |х>и |х'>и сумму на интеграл. Мы получим

Этот интеграл можно при желании записывать иначе:

где

Интеграл по х' в (18.25) тот же самый, что встречался нам в гл. 14 [см. (14.50) и (14.52)]. Он равен

Поэтому можно написать

Вспомним, что x>=<x|y>*=y*(x); с помощью этого равенства среднее значение энергии в (18.23) можно записать в виде

Если волновая функция y (x) известна, то, взяв этот интеграл, вы получите среднюю энергию. Вы теперь начинаете понимать, как от представлений о волновом векторе можно перейти к пред­ставлению о волновой функции и обратно.

Величина в фигурных скобках в (18.27) это алгебраический оператор. [«Оператор» V(x) означает «умножь на V(x)».]Мы обоз­начим его

В этих обозначениях (18.23) превращается в


Определенный здесь алгебраический оператор, конечно, не тождествен с квантовомеханическим оператором Н^. Новый оператор действует на функцию координаты y(x)=<x|y>, об­разуя новую функцию от х, j(x)=<x|j>, а H^ действует на век­тор состояния |y>, образуя другой вектор состояния |ф>, причем не имеется в виду ни координатное, ни вообще какое-либо частное представление. Мало того, даже в координатном представлении не совсем то же, что Н^. Если бы мы решили работать в координатном представлении, то смысл оператору H^ пришлось бы придавать с помощью матрицы <x|H^|x'>, кото­рая как-то зависит от двух «индексов» x и x'; иначе говоря, сле­довало бы ожидать, что [как утверждает (18.25)] <x|j> свя­зано со всеми амплитудами <x|y> операцией интегрирования. А с другой стороны, мы нашли, что это дифференциальный оператор. Связь между <x|H^|х'> и алгебраическим оператором

мы уже выясняли в гл. 14, § 5.

Наши результаты нуждаются в одном уточнении. Мы пред­положили, что амплитуда y (x)=<x|y> нормирована, т, е. мас­штабы выбраны так, что

и вероятность увидеть электрон все равно где равна единице. Но вы могли бы, если бы захотели работать с ненормирован­ной y (х), следовало бы только писать

Это одно и то же.

Обратите внимание на сходство между (18.28) и (18.18). Оба эти способа записи одного и того же результата при работе в x-представлении часто встречаются. От первого можно пе­рейти ко второму, если А^ — локальный оператор, т. е. такой, для которого интеграл

может быть записан в виде, где дифференциальный алгебраический оператор. Однако встречаются операторы, для которых это неверно. Тогда приходится работать с ис­ходными уравнениями (18.21) и (18.22).

Наш вывод легко обобщается на три измерения. Итог таков:


где

причем подразумевается, что

Такие же уравнения получаются довольно очевидным образом и при обобщении на системы с несколькими электронами, но мы не будем сейчас заниматься выписыванием результатов.

С помощью (18.30) можно рассчитать среднюю энергию атомного состояния, даже не зная уровней энергии. Нужна только волновая функция. Это очень важный закон. Расскажем об одном интересном его применении. Пусть вам нужно узнать энергию основного состояния некоторой системы, скажем ато­ма гелия, но вы затрудняетесь решить уравнение Шредингера для волновой функции из-за большого числа переменных. Поло­жим, однако, что вы решили попробовать какую-то волновую функцию (выбрав ее по своему желанию) и подсчитать среднюю энергию. Иначе говоря, вы пользуетесь уравнением (18.29), обобщенным на три измерения, чтобы узнать, какова была бы средняя энергия, если бы атом был на самом деле в состоянии, описываемом этой волновой функцией. Эта энергия, бесспорно, окажется выше энергии основного состояния — самой низкой энергии, какую может иметь атом. Возьмем теперь новую функцию и вычислим новую среднюю энергию. Если она ниже, чем было при первом вашем выборе, значит, вы подошли ближе к истинной энергии основного состояния. Если вы немного поразмыслите, вы, конечно, начнете пробовать такие функции, в которых есть несколько свободных параметров. Тогда энергия выразится через эти параметры. Варьируя параметры так, что­бы получить наинизшую мыслимую энергию, вы тем самым пере­пробуете за один раз целый класс функций. Скорее всего вы обнаружите, что понижать энергию становится все труднее и труднее, т. е. начнете убеждаться в том, что уже довольно близко подошли к наинизшей возможной энергии. Именно так и был решен атом гелия — никаких дифференциальных урав­нений не решали, а составили особые функции со множеством поддающихся подгонке параметров, которые были подобраны так, чтобы дать средней энергии наинизшее значение.

§ 4. Оператор места

Каково среднее местоположение электрона в атоме? В данном состоянии |y> каково среднее значение координа­ты х?Разберем одномерный случай, а обобщение на трех­мерный или на системы с большим числом частиц останется на вашу долю. Мы имеем состояние, описываемое функцией y (x), и продолжаем раз за разом измерять х. Что получится в среднем? Очевидно, ∫xP(x)dx, где Р(х)вероятность обнаружить

электрон в небольшом элементе длины dx возле х. Пусть плот­ность вероятности Р(х)меняется с х так, как показано на фиг. 18.1.

Фиг. 18.1. Кривая плотно­сти вероятности, представ­ляющей локализованную час­тицу.

Вероятнее всего вы обнаружите электрон где-то возле вершины кривой. Среднее значение х тоже придется куда-то на область невдалеке от вершины, а точнее, как раз на центр тяжести площади, ограниченной кривой.

Мы видели раньше, что P(x)=| y (x)|2=y*(x) y(х), значит, среднее х можно записать в виде

Наше уравнение для <x>ср имеет тот же вид, что (18.18). Когда мы считали среднюю энергию, мы ставили между двумя y оператор, а когда считаем среднее положение, ставим про­сто х. (Если угодно, можете рассматривать х как алгебраиче­ский оператор «умножь на х».)Эту параллель можно провести еще дальше, выразив среднее местоположение в форме, которая соответствует уравнению (18.18). Предположим, что мы просто написали

где

и смотрим, не удастся ли найти такой оператор х, чтобы он создавал состояние |a>, при котором уравнение (18.34) не противоречит уравнению (18.33). Иначе говоря, мы должны найти такое |a>, чтобы было

Разложим сперва по x-представлению:

Сравним затем интегралы в (18.36) и (18.37). Вы видите, что в х-представлении только в этом представлении)

Воздействие на |y> оператора х^ для получения |a> равнознач­но умножению y (x)=<x|y> на х для получения a (х)=<x|a>. Перед нами определение оператора х^ в координатном представ­лении.

(Мы не задавались целью получить x-представление матрицы оператора х^. Если вы честолюбивы, попытайтесь показать, что

Тогда вы сможете доказать поразительную формулу

т. е. что оператор х^ обладает интересным свойством: когда он действует на базисное состояние |x>, то это равнозначно умножению на х.)

А может, вы хотите знать среднее значение x2? Оно равно

Или, если желаете, можно написать и так:

где

Под x^2 подразумевается х^х^ — два оператора применяются друг за другом. С помощью (18.42) можно подсчитать <x2>ср, пользуясь каким угодно представлением (базисными состоя­ниями). Если вам нужно знать среднее значение хnили любого многочлена по х, то вы легко это теперь проделаете.

§ 5. Оператор импульса

Теперь мы хотим рассчитать средний импульс электрона, опять начав с одномерного случая. Пусть Р(р)dp — вероят­ность того, что измерение приведет к импульсу в интервале между р и p+dp. Тогда

Обозначим теперь через <р|y> амплитуду того, что состоя­ние |y> есть состояние с определенным импульсом |р>. Это та же самая амплитуда, которую в гл. 14, § 3, мы обозначали <имп.р|y>; она является функцией от р, как <x|y> является функцией от х. Затем мы выберем такую нормировку амплитуды, чтобы было

Тогда получится

что очень похоже на то, что мы имели для <x>ср.

При желании можно продолжить ту же игру, которой мы предавались с <x>ср. Во-первых, этот интеграл можно записать так:

Теперь вы должны узнать в этом уравнении разложение амплитуды — разложение по базисным состояниям с определенным импульсом. Из (18.45) следует, что состояние |b> определяется в импульсном представлении уравнением

Иначе говоря, теперь можно писать

причем

где оператор р^ определяется на языке p-представления урав­нением (18.47).

[И опять при желании можно показать, что матричная запись р^ такова:

и что

Выводится это так же. как и для х.

Теперь возникает интересный вопрос. Мы можем написать <р>ср так, как мы это сделали в (18.45) и (18.48); смысл опе­ратора р^ в импульсном представлении нам тоже известен. Но как истолковать р^ в координатном представлении? Это бывает нужно знать, если у нас есть волновая функция y (x)и мы со­бираемся вычислить ее средний импульс. Позвольте более четко пояснить, что имеется в виду. Если мы начнем с того, что за­дадим <p>cp уравнением (18.48), то это уравнение можно бу­дет разложить по p-представлению и вернуться к (18.45). Если нам задано p-представление состояния, а именно амплитуда <p|y> как алгебраическая функция импульса p, то из (18.47) можно получить <p|b> и продолжить вычисление интеграла. Вопрос теперь в следующем: а что делать, если нам задано описание состояния в x-представлении, а именно волновая функ­ция y (x)=<x|y>?

Ну что ж, начнем раскладывать (18.48) в x-представлении.

Напишем

Но теперь надо знать другое: как выглядит состояние |b> в x-представлении. Если мы узнаем это, мы сможем взять ин­теграл. Итак, наша задача — найти функцию b (x)=<x|b>. Ее можно найти следующим образом. Мы видели в гл. 14, § 3, как <р|b> связано с <x|b>. Согласно уравнению (14.24),

Если нам известно <р|b>, то, решив это уравнение, мы найдем <x|b>. Но результат, конечно, следовало бы как-то выразить через y (x)=<x|y>, потому что считается, что именно эта ве­личина нам известна. Будем теперь исходить из (18.47) и, опять применив (14.24), напишем

Интеграл берется по х, поэтому р можно внести под интеграл

Теперь сравним это с (18.53). Может быть, вы подумали, что <x|b> равно py(x)? Нет, напрасно! Волновая функция <х|b>=b(x) может зависеть только от х, но не от р. В этом-то вся трудность.

К счастью, кто-то заметил, что интеграл в (18.55) мо­жно проинтегрировать по частям. Производная e-ipx/hпо х равна (-i/h)pe-ipx/h, поэтому интеграл (18.55) это все равно, что

Если это проинтегрировать по частям, оно превратится в

Пока речь идет только о связанных состояниях, y(x) стремится к нулю при х®±Ґ, скобка равна нулю и мы имеем

А вот теперь сравним этот результат с (18.53). Вы видите, что

Все необходимое, чтобы взять интеграл в (18.52), у нас уже есть. Окончательный ответ таков:

Мы узнали, как выглядит (18.48) в координатном представлении. Перед нами начинает постепенно вырисовываться интересная картина. Когда мы задали вопрос о средней энергии состояния |y>, то ответ был таков:

То же самое в координатном мире записывается так:

Здесь — алгебраический оператор, который действует на функцию от х.

Когда мы задали вопрос о среднем значении х, то тоже обнаружили, что ответ имеет вид

В координатном мире соответствующие уравнения таковы:

Когда мы задали вопрос о среднем значении р, то ответ оказался

В координатном мире эквивалентные уравнения имели бы вид

Во всех наших трех примерах мы исходили из состояния |y> и создавали новое (гипотетическое) состояние с помощью квантовомеханического оператора. В координатном представле­нии мы генерируем соответствующую волновую функцию, дей­ствуя на волновую функцию y (x) алгебраическим оператором. Можно говорить о взаимнооднозначном соответствии (для одно­мерных задач) между

В этом перечне мы ввели новый символ для алгебраического оператора (h/i)д/дx:

и поставили под значок х, чтобы напомнить, что имеем пока дело с одной только x-компонентой импульса.

Результат этот легко обобщается на три измерения. Для других компонент импульса

При желании можно даже говорить об операторе вектора импульса и писать

где ех, еy и еz — единичные векторы в трех направлениях. Можно записать это и еще изящнее:

Окончательный вывод наш таков: по крайней мере для некоторых квантовомеханических операторов существуют соот­ветствующие им алгебраические операторы в координатном пред­ставлении. Все, что мы до сих пор вывели (с учетом трехмер­ности мира), подытожено в табл. 18.1. Каждый оператор может быть представлен в двух равноценных видах:

либо

либо

Теперь мы дадим несколько иллюстраций применения этих идей. Для начала выявим связь между.

Если применить дважды, получим

Это означает, что можно написать равенство

Или, в векторных обозначениях,

(Члены в алгебраическом операторе, над которыми нет символа оператора ^, означают простое умножение.) Это уравнение очень приятно, потому что его легко запомнить, если вы еще не забыли курса классической физики. Хорошо известно, что энергия (не­релятивистская) состоит из кинетической энергии р2/2m плюс потенциальная, а у нас тоже оператор полной энергии. Этот результат произвел на некоторых деятелей столь силь­ное впечатление, что они начали стремиться во что бы то ни стало вбить студенту в голову всю классическую физику, прежде чем приступить к квантовой. (Мы думаем иначе!) Параллели очень часто обманчивы. Если у вас есть операторы, то важен порядок различных множителей, а в классическом уравнении он безраз­личен.

Таблица 18.1 · АЛГЕБРАИЧЕСКИЕ ОПЕРАТОРЫ В КООРДИ­НАТНОМ ПРЕДСТАВЛЕНИИ

В гл. 15 мы определили оператор р^хчерез оператор смещения D^x[см. формулу (15.27)]:

где d — малое смещение. Мы должны показать, что это экви­валентно нашему новому определению. В соответствии с тем, что мы только что доказали, это уравнение должно означать то же самое, что и

Но в правой части стоит просто разложение y (x+d) в ряд Тэйлора, а y (x+d)— то, что получится, если сместить состояние влево на б (или сдвинуть на столько же вправо систему коорди­нат). Оба наши определения р^ согласуются!

Воспользуемся этим, чтобы доказать еще кое-что. Пусть у нас в какой-то сложной системе имеется множество частиц, которым мы присвоим номера 1, 2, 3, ... . (Для простоты остано­вимся на одномерном случае.) Волновая функция, описывающая состояние, является функцией всех координат х1: х2, x3,... . Запишем ее в виде y (x1, х2, х3, ...). Сдвинем теперь систему (вле­во) на d. Новая волновая функция

может быть записана так:

Согласно уравнению (18.65), оператор импульса состояния |y> (назовем его полным импульсом) равняется

Но это все равно, что написать

Операторы импульса подчиняются тому правилу, что пол­ный импульс есть сумма импульсов отдельных частей. Здесь, как видите, все чудесным образом переплетено и разные вещи взаимно согласуются.

§ 6. Момент количества движения

Для интереса рассмотрим еще одну операцию — операцию орбитального момента количества движения. В гл. 15 мы опре­делили оператор J^zчерез R^z(j) — оператор поворота на угол j вокруг оси z. Рассмотрим сейчас систему, описываемую всего лишь одной-единственной волновой функцией y(r), которая является функцией одних только координат и не учитывает того факта, что спин у электрона должен быть направлен либо вверх, либо вниз. Это значит, что мы собираемся пока пренебречь внутренним моментом количества движения и намерены ду­мать только об орбитальной части. Чтобы подчеркнуть разли­чие, обозначим орбитальный оператор L^zи определим его че­рез оператор поворота на бесконечно малый угол e формулой

(напоминаем: это определение применимо только к состоянию |y>, у которого нет внутренних спиновых переменных, а есть только зависимость от координат r: х, у, z). Если мы взглянем на состояние |y> из новой системы координат, повернутой во­круг оси z на небольшой угол e, то увидим новое состояние:

Если мы решили описывать состояние |y> в координатном представлении, т. е. с помощью его волновой функции y (r), то следует ожидать такого равенства:

Что же такое? А вот что. Точка Р (х, у) в новой системе коор­динат (на самом деле х', у', но мы убрали штрихи) раньше имела координаты x-ey и y+ex (фиг. 18.2).

Фиг. 18.2. Поворот осей во­круг оси z на малый угол e.

Поскольку амплитуда того, что электрон окажется в точке Р, не меняется от поворота систе­мы координат, то можно писать

(напоминаем, что e — малый угол). Это означает, что

Это и есть наш ответ. Обратите, однако, внимание, что это определение эквивалентно такому:

Или, если вернуться к нашим квантовомеханическим операто­рам, можно написать

Эту формулу легко запомнить, потому что она похожа на знако­мую формулу классической механики: это z-компонента вектор­ного произведения

L=rXp. (18.72)

Одна из забавных сторон манипуляций с операторами за­ключается в том, что многие классические уравнения переносятся в квантовомеханическую форму. А какие нет? Ведь должны же быть такие, которые не получаются, потому что если бы все пов­торялось, то в квантовой механике не было бы ничего отличного от классической, не было бы новой физики.

Вот вам уравнение, которое отличается. В классической фи­зике

хрхxх=0.

А что в квантовой механике?

Подсчитаем это в x-представлении. Чтобы было видно, что мы делаем, приложим это к некоторой волновой функ­ции y(x). Пишем

или

Вспомним теперь, что производные действуют на всё, что справа. Получаем

Ответ не нуль. Вся операция попросту равнозначна умножению на -h/i:

Если бы постоянная Планка была равна нулю, то квантовые и классические результаты стали бы одинаковыми и не пришлось бы нам учить никакой квантовой механики!

Отметим, что если два каких-то оператора А и В, взятые в сочетании

не дают нуля, то мы говорим, что «операторы не перестановоч­ны», или «операторы не коммутируют». А уравнение наподо­бие (18.74) называется «перестановочным соотношением». Вы можете сами убедиться, что перестановочное соотношение для pхи у (или коммутатор рхи у) имеет вид

Существует еще одно очень важное перестановочное соотно­шение. Оно относится к моментам количества движения. Вид его таков:

Если вы хотите приобрести некоторый опыт работы с операто­рами x^ и p^, попробуйте доказать эту формулу сами.

Интересно заметить, что операторы, которые не коммути­руют, можно встретить и в классической физике. Мы с этим уже сталкивались, когда говорили о поворотах в пространстве. Если вы повернете что-нибудь, например книжку, сперва на 90° вокруг оси х, а затем на 90° вокруг оси у, то получится совсем не то, что было бы, если бы сначала вы повернули ее на 90° вокруг оси у, а после на 90° вокруг оси х. Именно это свойство пространства и ответственно за уравнение (18.75).

§ 7. Изменение средних со временем

Теперь мы познакомим вас с еще одной интересной вещью: вы узнаете, как средние изменяются во времени. Представим на минуту, что у нас есть оператор А^, в который время явным образом не входит. Имеется в виду такой оператор, как х^ или р^.

[А исключаются, скажем, такие вещи, как оператор внешнего потенциала V(x, t), меняющийся во времени.] Теперь предста­вим, что мы вычислили <A>ср в некотором состоянии |y>, т. е.

Как <A>ср будет зависеть от времени? Но почему оно вообще может зависеть от времени? Ну, во-первых, может случиться, что оператор сам явно зависит от времени, например, если он был связан с переменным потенциалом типа V(x, t). Но даже если оператор от t не зависит, например оператор А^=х^, то соответствующее среднее может зависеть от времени. Ведь среднее положение частицы может перемещаться. Но как может такое движение получиться из (18.76), если А от времени не за­висит? Дело в том, что во времени может меняться само состоя­ние |y>. Для нестационарных состояний мы часто даже явно отмечали зависимость от времени, записывая их как |y(t)>. Теперь мы хотим показать, что скорость изменения <A>ср

дается новым оператором, который мы обозначим. Напомним, что это оператор, так что точка над А вовсе не означает диффе­ренцирования по времени, а является просто способом записи

нового оператора, определяемого равенством

Задачей нашей будет найти оператор.

Прежде всего, нам известно, что скорость изменения со­стояния дается гамильтонианом. В частности,

Это всего-навсего абстрактная форма записи нашего перво­начального определения гамильтониана

Если мы комплексно сопряжем это уравнение, оно будет эквивалентно

Посмотрим теперь, что случится, если мы продифференцируем (18.76) по t. Поскольку каждое y зависит от t, мы имеем

Наконец, заменяя производные их выражениями (18.78) и (18.80), получаем

а это то же самое, что написать

Сравнивая это уравнение с (18.77), мы видим, что

Это и есть то интересное соотношение, которое мы обещали; и оно справедливо для любого оператора А.

Кстати заметим, что, если бы оператор А сам зависел от вре­мени, мы бы получили

Проверим (18.82) на каком-либо примере, чтобы посмотреть, имеет ли оно вообще смысл. Какой, например, оператор соот­ветствует х? Мы утверждаем, что это должно быть

Что это такое? Один способ установить, что это такое — перейти в координатное представление и воспользоваться алгебраи­ческим оператором

. В этом представлении коммутатор равен

Если вы подействуете всем этим выражением на волновую функцию y(х)и вычислите везде, где нужно, производные, вы в конце концов получите

Но это то же самое, что и

так что мы обнаруживаем, что

или что

Прелестный результат. Он означает, что если среднее значе­ние х меняется со временем, то перемещение центра тяжести равно среднему импульсу, деленному на массу т. Точно как в классической механике.

Другой пример. Какова скорость изменения среднего им­пульса состояния? Правила игры прежние. Оператор этой ско­рости равен

Опять все можно подсчитать в x-представлении. Напомним, что р^ обращается в d/dx, а это означает, что вам придется дифферен­цировать потенциальную энергию V ), но только во втором слагаемом. В конце концов остается только один член, и вы получаете

или

Опять классический результат. Справа стоит сила, так что мы вывели закон Ньютона! Но помните — это законы для операто­ров, которые дают средние величины. Они не описывают в де­талях, что происходит внутри атома.

Существенное отличие квантовой механики в том, что р^х^ не равно х^р^. Они отличаются на самую малость — на малень­кое число h. Но все поразительные сложности интерференции волн и тому подобного проистекают из того небольшого факта, что х^р^-р^х^ не совсем нуль.

История этой идеи тоже интересна. С разницей в несколько месяцев в 1926 г. Гейзенберг и Шредингер независимо оты­скали правильные законы, описывающие атомную механику. Шредингер изобрел свою волновую функцию y(х)и нашел уравнение для нее, а Гейзенберг обнаружил, что природу можно было бы описывать и классическими уравнениями, лишь бы хр-рх было равно h/i, чего можно было добиться, определив их с по­мощью особого вида матриц. На нашем теперешнем языке он пользовался энергетическим представлением и его матрицами. И то и другое — и матричная алгебра Гейзенберга и дифферен­циальное уравнение Шредингера — объясняли атом водорода. Несколькими месяцами позднее Шредингер смог показать, что обе теории эквивалентны — мы только что это видели. Но две разные математические формы квантовой механики были от­крыты независимо.

* Во многих книжках для используется один и тот же символ: физика в них одна и та же, да и удобнее все время обходиться без новых букв. А из контекста всегда ясно, что имеется в виду.

* Уравнение (18.38) не означает, что |a>=x|y> [ср. (18.35)]. Сокра­щать на <х| нельзя, потому что множитель х перед для каждого состояния <х| имеет свое значение. Это — значение координаты электрона в состоянии |х> [см. (18.40)].

* Можно выразить это и иначе. Какую бы функцию (т. е. состояние) вы ни выбрали, ее всегда можно представить в виде линейной комбина­ции базисных состояний, являющихся состояниями с определенной энер­гией. Поскольку в этой комбинации присутствует примесь состояний с более высокими энергиями, то средняя энергия окажется выше энергии основного состояния.


* Элемент объема мы обозначаем d Объем. Он попросту равен dxdydz, а интеграл берется от -Ґ до +Ґ по всем трем координатам.


Перейти на страницу:

Похожие книги