Читаем 9. Квантовая механика II полностью

Глава 18

ОПЕРАТОРЫ


§ 1. Операции и операторы

§ 2. Средние энергии

§ 3. Средняя энергия атома

§ 4. Оператор места

§ 5. Оператор импульса

§ 6. Момент коли­чества движения

§ 7. Изменение средних со временем


§ 1. Операции и операторы

Для того чтобы управиться со всем, что мы до сих пор делали в квантовой механике, достаточно было бы обычной алгебры, но мы все же время от времени демонстрировали особые способы записи квантовомеханических величин и уравнений. Мы хотели бы рассказать теперь немного больше о некоторых интересных и по­лезных способах описания квантовомеханических величин.

К предмету квантовой механики можно подойти разными способами, и во многих книгах прибегают совсем к иному подходу, чем у нас. Когда вы начнете читать другие книжки, то может оказаться, что вам не удастся сразу связать то, что в них говорится, с тем, что де­лали мы. Хотя в этой главе мы и получим кое-какие новые результаты, она не похожа на дру­гие главы. У нее совсем иная цель: рассказать о других способах выражения тех же самых фи­зических представлений. Зная это, вы легче поймете, о чем говорится в других книжках. Когда люди впервые начали разрабатывать классическую механику, они неизменно распи­сывали свои уравнения через х-, у- и z-компоненты. Затем кто-то сделал шаг вперед в указал, что все можно упростить, введя век­торные обозначения. Правда, очень часто, чтобы представить себе задачу конкретнее, вы разбиваете векторы обратно на их компонен­ты. Но обычно все же куда легче делать расчеты и разбираться в существе дела, работая с век­торами. В квантовой механике нам тоже удалось упростить запись многих вещей, воспользовав­шись идеей «вектора состояния». Вектор состоя­ния |y> ничего общего, конечно, не имеет с геометрическими векторами в трехмерном пространстве; это просто отвлеченный символ, который обозначает физиче­ское состояние, отмечаемое своим «значком» или «назва­нием» y. Представление это весьма и весьма полезно, потому что на языке этих символов законы квантовой механики выглядят как алгебраические уравнения. К примеру, тот наш фундаментальный закон, что всякое состояние можно соста­вить из линейной комбинации базисных состояний, записы­вается так:

где Сi — совокупность обычных (комплексных) чисел, ампли­туд Ci=, а |1>, |2>, |3> и т. д. обозначают базисные состояния в некотором базисе, или представлении.

Если вы берете какое-то физическое состояние и что-то про­делываете над ним (поворачиваете или ждете в течение времени At или еще что-то), то вы получаете уже другое состояние. Мы говорим: «производя над состоянием операцию, получаем новое состояние». Эту же идею можно выразить уравнением

Операция над состоянием создает новое состояние. Оператор А обозначает некоторую определенную операцию. Когда эта операция совершается над каким-то состоянием, скажем над |y>, то она создает какое-то другое состояние |j>.

Что означает уравнение (18.2)? Мы определяем его смысл так. Умножив уравнение на <i| и разложив |y> по (18.1), вы получите

(|j> — это состояния из той же совокупности, что и |i>. Теперь это просто алгебраическое уравнение. Число <i|j> показывает, какое количество базисного состояния |i> вы обнаружите в |j>, и оно определяется через линейную суперпо­зицию амплитуд <j|y> того, что вы обнаружите |y> в том или ином базисном состоянии. Числа <i|A^|j> — это попросту коэф­фициенты, которые говорят, сколько (какая доля) состояния <j|y> входит в сумму. Оператор А численно описывается на­бором чисел, или «матрицей»

Значит, (18.2) это запись уравнения (18.3) на высшем уровне. А на самом деле даже немножко и сверх того: в нем подразуме­вается нечто большее. В (18.2) нет ссылки на ту или иную систе­му базисных состояний. Уравнение (18.3) — это образ уравнения (18.2) в некоторой системе базисных состояний. Но, как известно, система годится любая. Именно это и имеется в виду в (18.3). Операторная манера записи, стало быть, уклоняется от того или иного выбора системы. Конечно, если вам хочется определенности, вы вольны избрать одну из систем. И когда вы де­лаете этот выбор, вы пишете уравнение (18.3). Значит, опера­торное уравнение (18.2) — это более отвлеченный способ за­писи алгебраического уравнения (18.3). Это очень походит на разницу между записью

c=aXb и записью

Перейти на страницу:

Похожие книги