Рис. 7.6.
Электроны и фотоны — это частицы и волны, а бейсбольные мячи — это лишь частицы
Электроны в ЭЛТ ведут себя как частицы, подобно фотонам в фотоэлектрическом эффекте. Низкоэнергетические электроны ведут себя как волны при дифракции на поверхности кристалла, что аналогично поведению фотонов, когда они испытывают дифракцию на дифракционной решётке. На самом деле фотоны, электроны и все остальные частицы являются волновыми пакетами, которые в большей или меньшей степени локализованы. Волновые пакеты могут демонстрировать свои волновые или корпускулярные свойства в зависимости от обстоятельств.
Если фотоны и электроны могут демонстрировать как волновые, так и корпускулярные свойства, то почему такого не бывает с бейсбольными мячами? Чтобы понять, почему мячи ведут себя как частицы с позиций классической механики, необходимо рассмотреть, как соотносятся размеры частиц и длины связанных с ними волн.
Рассмотрим для начала электрон в атоме водорода. Мы будем обсуждать квантовое описание атома водорода и других атомов в главах 10 и 11, а сейчас используем лишь простые количественные оценки волновых параметров атома водорода. Согласно формуле де Бройля, длина волны определяется формулой
Заметим, что значение 1,5 Å примерно соответствует размеру атома. Таким образом, длина волны электрона в атоме и размеры атома примерно одинаковы. Волновые свойства электронов становятся очень важны, когда электроны оказываются в очень маленьких системах, таких как атомы.
А что можно сказать о бейсбольном мяче? По правилам Главной лиги бейсбола мяч должен весить от 142 до 149
Это невероятно малая величина. Размер одного атома составляет около 1 Å, размер ядра атома — примерно 10−5
Å. Следовательно, длина волны бейсбольного мяча составляет 0,0000000000000000001 размера атомного ядра. Такая длина волны чрезвычайно мала — настолько, что она никогда не проявится ни при каких измерениях. Ни у какой дифракционной решётки не может быть столь малого шага, чтобы продемонстрировать дифракцию волн длиной в одну десятимиллионную от триллионной доли размера атомного ядра. Поскольку эта длина волны та́к мала́, нам не приходится беспокоиться о том, что мяч может испытать дифракцию на бейсбольной бите. Он всегда ведёт себя как классическая частица.Объекты, которые велики в абсолютном смысле, обладают тем свойством, что ассоциированная с ними длина волны совершенно ничтожна по сравнению с их размерами. Поэтому крупные частицы демонстрируют только свою корпускулярную природу, а их волновая природа никогда не проявляется. Напротив, для частиц, которые малы в абсолютном смысле, длина волны де Бройля сопоставима с их размерами. Такие абсолютно малые частицы ведут себя как волны или как частицы в зависимости от ситуации. Они представляют собой волновые пакеты. В контексте нашего обсуждения они являются и волнами, и частицами.
8. Квантовый ракетбол и цвет фруктов
В предыдущих главах были введены и объяснены фундаментальные понятия квантовой теории. Приведённые примеры, однако, касались только поведения свободных частиц. Было показано, что электроны могут вести себя как частицы, когда обсуждается работа ЭЛТ, но они ведут себя как волны, когда речь идёт о дифракции на поверхности кристаллов.
Свободная частица может иметь любую энергию. Эта энергия, которая является кинетической, определяется массой и скоростью частицы. Небольшое приращение скорости даёт небольшой прирост энергии. Значительное увеличение скорости приведёт к существенному увеличению энергии. Шаги изменения энергии могут быть любой величины; она меняется непрерывным образом.