Читаем Абсолютный минимум полностью

Другая важная особенность классического ракетбола — это возможность остановить мяч так, чтобы он неподвижно лежал на полу. В этой ситуации его скорость равна нулю: V=0. А раз V=0, то и Ek=0. При V=0 импульс тоже равен нулю, поскольку p=mV, так что импульс известен нам точно. Если мяч лежит на полу (V=0), то его положение известно. Если обозначить это положение x (см. рис. 8.2), то значение x будет находиться в интервале от 0 до L. Величина x не может принимать никакие другие значения, поскольку мяч находится на площадке (в ящике) и не может оказаться снаружи из-за идеальных стенок. Мяч можно поместить в определённое положение x на полу площадки, и тогда его положение будет известно точно. Это свойство макроскопической игровой площадки, даже идеальной. Это классическая система, и в ней можно точно и одновременно знать импульс p и положение x.

Площадка для игры в ракетбол имеет длину 12 м, диаметр мяча составляет 5,6 см, а его вес — около 0,04 кг. Очевидно, что игра в ракетбол описывается классической механикой. С помощью света можно следить за отскоками мяча туда-обратно, не влияя на них.

Частица в ящике — квантовый случай

Что изменится, если теперь мы перейдём к рассмотрению квантового ракетбола? Площадка остаётся идеальной, но теперь её длина не 12 м, а 1 нм (10−9 м). Кроме того, частица обладает массой электрона, равной 9,1∙10−31 кг, а не 0,04 кг. Таким образом, это задача о квантовой частице в ящике.

Сразу можно сказать, что наименьшая энергия квантовой частицы в ящике нанометрового размера не может быть нулевой. На классической ракетбольной площадке возможна скорость мяча V, равная нулю, а значит, нулевым может быть и импульс p=mV. Кроме того, положение мяча x имеет чётко определённое значение. Например, мяч может лежать неподвижно (V=0) точно посередине площадки, что соответствует x=L/2. В таком случае для нашего классического ракетбольного мяча ∆p=0 и ∆x=0. Значение произведения ∆x∙∆p=0 не соответствует принципу неопределённости Гейзенберга, что нормально, поскольку речь идёт о классической системе. Однако абсолютно малая частица в ящике нанометрового размера является квантовым объектом и должна подчиняться принципу неопределённости, утверждающему, что ∆x∙∆ph/4π. Если V=0 и x=L/2, то мы знаем одновременно x и p, а значит, ∆x∙∆p=0, как в классическом ракетболе. Для квантовой системы это невозможно. Таким образом, V не может быть равно нулю. Частица не может неподвижно пребывать в заданной точке. А если значение V ненулевое, то и значение Ek не может быть равно нулю. Принцип неопределённости говорит, что наименьшая энергия нашего квантового ракетбольного мяча не может быть нулевой. Квантовый мяч никогда не пребывает в неподвижности.

Значения энергии квантовой частицы в ящике

Какой энергией может обладать квантовая частица в ящике нанометровых размеров? На этот вопрос можно ответить без сложных расчётов, но сначала нам нужно вновь вернуться к волнам. В главе 6 мы говорили о волновых функциях свободных частиц. Волновая функция свободной частицы с определённым импульсом p — это волна, которая простирается по всему пространству. Таким образом, электрон с идеально определённым импульсом — это делокализованная волна, охватывающая всё пространство. Вероятность обнаружить свободный электрон всюду одинакова. Такой электрон обладает чётко определённой кинетической энергией EkmV2, поскольку имеет чётко определённый импульс p=mV.

Электрон в нанометровой коробке подобен нашей свободной частице в том, что касается внутренней области коробки, где Q=0. Внутри коробки отсутствует потенциал, а значит, нет и действующих на частицу сил. В этом отношении она очень похожа на свободную частицу, на которую тоже не действуют никакие силы. Однако есть важное различие между частицей в коробке и свободной частицей — это стенки ящика. Электрон в ящике находится только внутри ящика. Идеальный характер ящика не позволяет его волновой функции распространиться на всё пространство. Частица находится внутри ящика и никогда не может оказаться снаружи. Волновая функция задаёт амплитуду вероятности обнаружить частицу в некоторой области пространства. Это борновская интерпретация волновой функции. Если наш электрон может быть обнаружен только внутри ящика и никогда снаружи, то вероятность его обнаружения в ящике должна быть конечной, а вовне — нулевой. Если вероятность найти частицу вне ящика равна нулю, то и волновая функция должна быть равна нулю во всех точках вне ящика.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

История работорговли. Странствия невольничьих кораблей в Антлантике
История работорговли. Странствия невольничьих кораблей в Антлантике

Джордж Фрэнсис Доу, историк и собиратель древностей, автор многих книг о прошлом Америки, уверен, что в морской летописи не было более черных страниц, чем те, которые рассказывают о странствиях невольничьих кораблей. Все морские суда с трюмами, набитыми чернокожими рабами, захваченными во время племенных войн или похищенными в мирное время, направлялись от побережья Гвинейского залива в Вест-Индию, в американские колонии, ставшие Соединенными Штатами, где несчастных продавали или обменивали на самые разные товары. В книге собраны воспоминания судовых врачей, капитанов и пассажиров, а также письменные отчеты для парламентских комиссий по расследованию работорговли, дано описание ее коммерческой структуры.

Джордж Фрэнсис Доу

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Записки библиофила. Почему книги имеют власть над нами
Записки библиофила. Почему книги имеют власть над нами

В своем невероятно увлекательном повествовании профессор Оксфорда, специалист по Шекспиру Эмма Смит рассказывает об истории книг, многовековой и поразительно интересной, делая акцент не на привычном нам образе «архивов мудрости и знаний», а на материальных формах, в которых представали книги, и на том, насколько разным целям им порой приходилось служить.Представляя захватывающую и радикально новую историю книги в руках человека, автор ищет ответ на вопросы, когда и как та приобрела власть над нами. Рассказывая о той огромной роли, которую целое тысячелетие играли в жизни людей книги, Смит делает удивительное открытие о том, что характерную и весьма могущественную магию книг рождает не только содержание, но и форма. От Алмазной сутры до книги, сделанной из завернутых в целлофан ломтиков сыра, этот сложный художественный объект уже много веков вмещает в себя и расширяет взаимоотношения между читателями, странами, идеологиями и культурами, и делает это очень решительно и непредсказуемо.«Любая книга сулит читателю трансформацию. Ожидание перемен входит в незримый договор между книгами и их читателями. В этом смысле все книги – это книги о том, как помочь самому себе. Если у нас нет удовольствия или связи с какой-нибудь книгой, значит, мы упорно уклоняемся от обязанностей, которые должны выполнять по договору с ней». (Эмма Смит)

Эмма Смит

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература