В обсуждавшихся до сих пор соединениях углерод использует четыре sp
3-гибридизированные атомные орбитали для создания четырёх одиночных σ-связей с другими атомами. В таких соединениях каждый атом углерода имеет тетраэдрическую конфигурацию четырёх связей. На рис. 14.3 изображена молекула формальдегида. Формальдегид содержит атом углерода с двойной связью. Чтобы показать, каким образом углерод создаёт одиночные, двойные и тройные связи, мы рассмотрим химические связи в этане, этилене и ацетилене. Эти три вещества имеют химические формулы H3C−CH3, H2C=CH2 и HC≡CH соответственно. Этан имеет одиночную связь, этилен — двойную, а ацетилен — тройную. На рис. 14.14 показано строение этих трёх молекул. В этане каждый атом углерода образует четыре связи в тетраэдрической конфигурации. В этилене каждый атом углерода образует три связи в форме треугольника, а в ацетилене атомы углерода образуют две связи, вытянутые в линию.Хотя в каждой из трёх молекул два атома углерода связаны друг с другом, порядок их связи вносит большие различия. В табл. 14.1 приводятся значения длины и энергии C−C-связей для этих трёх молекул в зависимости от порядка связи. С увеличением порядка длина связи значительно сокращается, а энергия почти утраивается при переходе от одиночной связи к тройной.
Рис. 14.14.
Этан: одиночная связь, тетраэдрическая конфигурация связей углерода. Этилен: двойная связь, треугольная конфигурация связей углерода. Ацетилен: тройная связь, линейная конфигурация связей углерода
Таблица 14.1.
Одиночные, двойные и тройные C−C-связиПорядок связи, Длина связи, Энергия связи (
Дж)Этан, Одиночная (1), 1,54Å, 5,8∙10−19
Этилен, Двойная (2), 1,35Å, 8,7∙10−19
Ацетилен, Тройная (3), 1,21Å, 16∙10−19
Двойная углерод-углеродная связь — этилен
Для начала рассмотрим связь в молекуле этилена. Из рис. 14.15 видно, что углеродные центры здесь имеют треугольную форму. Как уже говорилось, для получения треугольной формы связей атом углерода будет использовать три sp
2-гибридизированные атомные орбитали для образования МО (см. рис. 14.7). Углерод имеет четыре валентные орбитали, служащие для образования химических связей: 2s, 2px, 2py и 2pz. В верхней части указанного рисунка молекула этилена располагается в плоскости xy. Таким образом, атомы углерода и водорода лежат в плоскости страницы, которая и есть xy. Чтобы образовать треугольную конфигурацию гибридных sp2-орбиталей, служащих для формирования трёх связей, оба атома углерода используют 2s-, 2px- и 2py-орбитали. С тремя гибридными sp2-орбиталями каждый атом углерода будет создавать три σ-связи: одну — с другим атомом углерода и две — с атомами водорода. Эти σ-связи показаны в верхней части рис. 14.15.Когда углерод образует три гибридные sp
2-орбитали из 2s-, 2px- и 2py-орбиталей, у него остаётся 2pz-орбиталь, которая не принимает участия в σ-связывании. В верхней части рис. 14.15 2pz-орбиталь направлена поперёк страницы, выступая над ней и позади неё. Каждый атом углерода имеет один неспаренный электрон на 2pz-орбитали. В нижней части рисунка молекула этилена изображена повёрнутой. Сигма-связь показана линией, соединяющей атомы. Положительные лепестки 2pz-орбиталей перекрываются конструктивно, и то же самое происходит с отрицательными лепестками. Две 2pz-орбитали объединяются и образуют π-связывающую молекулярную орбиталь (см. рис. 13.3). Это π-связь, поскольку у неё нет электронной плотности на линии, соединяющей центры атомов углерода. Совокупный результат состоит в том, что два атома углерода имеют двойную связь, состоящую из σ-связи, образованной sp2-орбиталями каждого атома, и π-связью, образованной 2pz-орбиталями тех же атомов.Вращение вокруг двойной углерод-углеродной связи невозможно. Для него потребовалось бы, чтобы перекрытие двух 2p
z-орбиталей становилось всё хуже по мере увеличения угла поворота. При угле, равном 90°, две 2p-орбитали были бы направлены перпендикулярно друг другу и не давали бы никакого перекрытия. Такой поворот разрушил бы π-связь, на что потребовалось бы значительное количество энергии.