Этанол является жидким, поскольку описанные небольшие изменения приводят к появлению своего рода химических взаимодействий между молекулами, которые называются водородными связями. Водородные связи намного — примерно в десять раз или более — уступают по силе настоящим ковалентным химическим связям. Чтобы точно описать образование водородных связей, необходима квантовая теория, однако получить представление на качественном уровне можно, рассматривая электростатическое взаимодействие между частичными зарядами. Водородная связь образуется, когда частично положительный атом водорода в одной молекуле притягивается к частично отрицательному атому кислорода в другой молекуле. За счёт этого притяжения атом водорода одной молекулы этанола тяготеет к строго определённому положению относительно атома кислорода другой молекулы этанола. Это притяжение удерживает молекулы этанола вместе и делает вещество жидким при комнатной температуре. В этане такого относительно сильного межмолекулярного взаимодействия нет.
Тепло — это форма кинетической энергии. При повышении температуры беспорядочное движение молекул усиливается. В этане молекулы не испытывают сильного притяжения друг к другу. При комнатной температуре тепловые движения не позволяют молекулам этана соединяться, и поэтому этан является газом. Представьте себе, что вы, держа за руки другого человека, побежали с ним в противоположных направлениях. Если ваше рукопожатие слабое, оно разорвётся, и вы разбежитесь, как молекулы этана. Если же вы держитесь очень крепко, то останетесь вместе и станете двигаться, будто связаны друг с другом, как молекулы этанола.
Рис. 15.2.
На рис. 15.2 изображены четыре молекулы этанола, соединённые в цепочку водородными связями. Штриховые линии идут от водорода в OH-группе одной молекулы этанола к неподелённой паре на атоме кислорода другой молекулы этанола. Неподелённая пара имеет высокую электронную плотность, так что частично положительный атом H притягивается к электронам неподелённой пары кислорода. Это продолжается от одной молекулы этанола к другой, и так образуется цепочка. Жидкий этанол состоит из цепочек молекул, которые соединяются водородными связями. Водородные связи делают этанол жидким при комнатной температуре, но они относительно слабые. Эти связи постоянно разрушаются и реорганизуются, но в среднем каждая молекула этанола имеет водородную связь (H-связь) с одной или несколькими другими молекулами этанола. Однако если достаточно сильно нагреть этанол, тепловые движения начнут разрушать H-связи, и молекулы будут разлетаться. Температура, при которой тепловой энергии достаточно для разделения молекул этанола, — это и есть точка кипения, равная 78 °C. При этой и более высокой температуре этанол становится газом.
Вода образует водородные связи
Вернёмся к вопросу о том, почему водородные связи необходимы для жизни. Вода (H2
O) имеет очень маленькую молекулу. По молекулярной массе она сравнима с кислородом O2, азотом N2 и метаном CH4, которые при комнатной температуре являются газами. Вода содержит один атом кислорода, связанный с двумя атомами водорода. Как и в случае с этанолом, кислород создаёт ковалентные связи с атомами водорода, но в ковалентной связи O−H электроны делятся не идеально поровну. В молекуле воды кислород перетягивает часть электронной плотности от атомов H. Демонстрирующая это схема молекулы воды выглядит так: Hδ+−Oδ−−Hδ+. Частично положительные атомы водорода одной молекулы воды притягиваются к частично отрицательным атомам кислорода другой молекулы. Одна молекула воды может создать до четырёх водородных связей.