Одновременно со снижением температуры воды, как известно, повышается растворимость в ней кислорода. Если при 20 °C нормальное насыщение воды кислородом составляет 9,02 мг/л, то при 1 °C — 14,25 мг/л. Следовательно, при снижении температуры повышается обеспеченность рыб кислородом и соответственно снижается потребность рыбы в воде. Чтобы учесть это снижение, введен кислородный коэффициент. Он показывает отношение концентрации кислорода при интересующей нас температуре воды к концентрации кислорода при температуре 14–18 °C. При этой температуре количество растворенного в воде кислорода по средневзвешенному значению равно 9,82 мг/л (9,40–10,26 мг/л).
Принимая эту величину за единицу, при температуре воды выше 14–18 °C кислородный коэффициент будет менее единицы, при температуре воды ниже 14–18 °C- больше единицы. Разделив величины расхода воды на кислородный коэффициент, мы учтем снижение потребности в воде рыб, соответствующее повышению растворимости кислорода. Таким образом, если при температуре 14–18 °C, например, для свободных эмбрионов потребность в воде составляет 8,1 л/мин., то при температуре 20 °C она повышается до 12,6 л/мин., а при температуре 3–5 °C — снижается до 1,3–1,7 л/мин. на 1 кг рыбы. Однако следует учесть, что эмпирические данные о расходе воды при температуре 14–18 °C получены в условиях насыщения воды кислородом до 95 %. Для удобства пользования расход воды приведен к насыщению 100 % (табл. 93).
| Температура воды, °С
Показатели | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12
Температурный коэффициент | 6,40 | 5,80 | 5,19 | 4,55 | 3,98 | 3,05 | 3,05 | 2,67 | 2,40 | 2,16 | 1,94 | 1,74 | 1,57 | 1,43 | 1,31 | 1,20 | 1,09 | 1,00 | 1,45
Кислородный коэффициент | 1,37 | 1,34 | 1,30 | 1,27 | 1,24 | 1,21 | 1,18 | 1,15 | 1,12 | 1,09 | 1,07 | 1,04 | 1,02 | 1,00 | 0,98 | 0,96 | 0,94 | 0,92 | 1,00
Стадия развития и масса рыбы, г:
свободные эмбрионы 0,14 (0,08-0,20) | 1,3 | 1,5 | 1,7 | 2,0 | 2,4 | 2,7 | 3,2 | 3,8 | 4,3 | 4,9 | 5,6 | 6,5 | 7,2 | 8,2 | 9,1 | 10,1 | 11,5 | 12,6 | 8,1 | 0,14 (0,08-0,20)
личинки 0,25(0,15-0,35) | 1,0 | 1,1 | 1,3 | 1,6 | 1,8 | 2,1 | 2,5 | 2,8 | 3,3 | 3,7 | 4,3 | 4,9 | 5,6 | 6,3 | 6,9 | 7,7 | 8,7 | 9,6 | 6,2
мальки до 1 г | 0,7 | 0,7 | 0,8 | 0,9 | 1,1 | 1,3 | 1,5 | 1,8 | 2,0 | 2,4 | 2,7 | 3,0 | 3,4 | 3,8 | 4,3 | 4,7 | 5,3 | 6,0 | 3,8
мальки до 4 г | 0,5 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,1 | 1,3 | 1,5 | 1,7 | 2,0 | 2,3 | 2,5 | 2,8 | 3,2 | 3,5 | 3,9 | 4,5 | 2,8
молодь посадочная, покатная, смолты массой до 20 г | 0,4 | 0,4 | 0,5 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,1 | 1,3 | 1,5 | 1,7 | 1,9 | 2,2 | 2,5 | 2,7 | 3,0 | 3,4 | 2,1
молодь посадочная, товарная рыба массой до 250 г | 0,2 | 0,2 | 0,2 | 0,3 | 0,3 | 0,4 | 0,5 | 0,6 | 0,6 | 0,7 | 0,8 | 1,0 | 1,0 | 1,2 | 1,3 | 1,5 | 1,6 | 1,9 | 1,2
Следовательно, если в конкретном рыбоводном предприятии индустриального типа в рыбоводные бассейны поступает вода с концентрацией кислорода менее 100 % насыщения, табличные данные увеличиваются следующим образом:
V= 100 n/М,
где: V — искомый расход воды, л/мин, на 1 кг рыбы; n — расход воды при 100 %-ном насыщении воды кислородом; М-насыщение воды кислородом в конкретном бассейне (во всем предприятии), % от нормального.
Потребность в воде при разной температуре, представленная графически, выглядит в виде параболических кривых, которые при понижении температуры воды имеют тенденцию к выпрямлению.
В практических целях представляет также интерес не расход воды на 1 кг массы выращиваемой рыбы, но, наоборот, возможная посадка рыбы (в кг) на 1 л/мин, подаваемой воды. Как видно, это взаимообратные величины. Для свободных эмбрионов, например, при температуре 14–18 °C требуется расход воды 8,2 л/мин, на 1 кг, в то время как в расчете на 1 л/мин, подаваемой воды можно посадить всего лишь 0,12 кг свободных эмбрионов. В процессе выращивания молоди эти величины сближаются.
Таким образом, для определения плотности посадки рыбы и интенсивности водообмена в бассейнах рыбоводного предприятия индустриального типа следует использовать эмпирические методы. Определение оптимальной плотности посадки рыб различных возрастных групп позволяет вычислить необходимый водообмен.
Качество воды в индустриальном рыбоводном хозяйстве