Читаем Алиса в стране Смекалки полностью

Шалтай-Болтай мог бы установить виновного только в одном случае: если Белый Рыцарь сообщил ему, что ровно два показания были правдивыми. Это означало бы, что А и В оба сказали правду (поскольку их показания согласуются, то если бы одно из них было ложно, то и другое было бы ложно, но тогда мы имели бы два ложных показания), а С солгал. Так как А и В оба сказали правду и обвинили В, подсудимый В должен быть виновен.

86. Что стало с Козлом? Из того, что Козел солгал, не следует, ни что он виновен, ни что он невиновен. Следовательно, даже если суд установил, что Козел дал ложные показания, Козла могли и признать виновным (на основании других данных, о которых нам ничего не известно), и освободить из-под стражи (опять-таки на основании дополнительных данных) или не сделать ни того ни другого. Что именно решил суд, мы не знаем. С другой стороны, если бы Жук и Комар дали правдивые показания, то это означало бы, что Козел виновен, так как оба насекомых обвиняли одно и то же существо (поскольку они говорили правду) и ни Жук, ни Комар не обвиняли себя. Следовательно, зазеркальные насекомые должны были обвинять Козла. Господину в белой бумаге должно было стать известно, что оба насекомых дали правдивые показания, иначе он не смог бы восстановить, какой приговор вынес суд. Но если Белый Рыцарь сообщил ему, что Жук и Комар сказали правду, то Господин в белой бумаге узнал, что суд признал виновным Козла.

87. Самое запутанное дело. Для того чтобы решить эту замечательную задачу, нам понадобится таблица, которой мы воспользовались при решении задачи 83.

Прежде всего заметим, что Бармаглот смог решить задачу, зная, к какому из восьми случаев относится данный казус (то есть что показал каждый из подсудимых), и зная, что по крайней мере один подсудимый говорил правду. Полученные сведения позволили Бармаглоту исключить случаи 4, 6, 7 и 8. Действительно, в случае 4 имеются два варианта (4 А и 4 С), в каждом из которых правдивые показания дал не более чем один подсудимый. В случае 6 имеются два варианта (6 В и 6 С), в случае 7 – также два варианта (7 А и 7 С) и в случае 8 – два варианта (8 В и 8 С). Таким образом, ни в одном из четырех случаев 4, 6, 7 и 8 Бармаглот не мог бы определить, кто из подсудимых виновен. С другой стороны, в случае 1 вариант 1 А – единственный, в котором имеется самое большее одно правдивое показание. В случае 2 имеется один единственно приемлемый вариант – 2 В, в случае 3 – вариант 3 Л и в случае 5 – вариант 5 В. Тем самым мы можем утверждать, что действительности соответствует один из случаев 1, 2, 3 и 5.

Труляля было сказано, что Бармаглот решил задачу. Следовательно, Труляля было известно, что показания на суде соответствуют либо случаю 1, либо случаю 2, либо случаю 3, либо случаю 5. Если бы Белый Рыцарь сообщил Труляля, что А заявил о своей виновности, то это позволило бы Труляля исключить случаи 1, 2 и 3, после чего он бы знал, что случай 5 единственно возможный. Это означало бы, что В виновен (так как в случае 5 речь могла бы идти только о варианте 5 В, в котором среди показаний было не более одного правдивого). Но тогда Труляля решил бы задачу, а мы знаем, что он не решил задачу. Следовательно, Белый Рыцарь не мог сообщить ему, что А заявил о своей виновности, а сказал, что А заявил о своей невиновности. Следовательно, происходившее на процессе относилось не к случаю 5. Определить же, к какому из случаев, 1, 2 или 3, относились данные на суде показания, Труляля не мог. Следовательно, он не знал, кто из подсудимых виновен: А или В. Тем не менее круг поисков сузился: мы знаем, что речь может идти только о случаях 1, 2 или 3.

Обратимся теперь к Траляля. Белый Рыцарь сказал о Бармаглоте, поэтому Траляля знал, что речь может идти только о случаях 1, 2, 3 и 5, но ему не было сказано о Труляля, поэтому он не мог исключить случай 5. Известно, что Траляля задал вопрос о показаниях подсудимых В или С, но мы не знаем, кто именно его интересовал. Предположим, что Траляля спросил о показаниях подсудимого В. Если Белый Рыцарь сообщил Траляля, что В признан виновным, то Траляля исключил бы случаи 1, 2 и 5 и у него остался бы случай 3. Но тогда он решил бы задачу (придя к заключению, что виновен А). Как известно, в действительности Траляля не решил задачу. Следовательно, если Траляля задал вопрос о показаниях подсудимого В, то ему сказали, что В заявил о своей невиновности. Итак, мы знаем, что если Траляля интересовался показаниями подсудимого В, то на процессе имел место случай 1 или 2.

Перейти на страницу:

Похожие книги

Игры с Чипом
Игры с Чипом

Цикл детских образовательных статей из журнала "Пионер" за 1986-1987 года.В сказочно-игровой форме для дошкольников и младших школьников даются базовые понятия информатики.Предисловие для ребят и родителейМы приближаемся к новому веку, в котором люди самых разных профессий будут работать на компьютерах — электронно-вычислительных машинах. Как человек должен излагать свои мысли, чтобы его понял компьютер? А как компьютер будет понимать человека? Эти и многие другие интересные задачи ставит информатика. Их придется решать тем, кто сейчас учится в школе, и тем, кто только ходит в детский сад, и тем, кто еще не родился на свет. Им надо научиться мыслить более точно, работать более организованно, чем это удается нам, старшему поколению. В этом году впервые начато обучение школьников основам информатики. Этот предмет преподают в 9—10-х классах, а младшим школьникам пока что удается в лучшем случае поиграть с электронной игрушкой или с калькулятором. Поэтому они видят лишь внешнюю сторону дела: дисплей на жидких кристаллах, кнопки, мелькающие цифры... Но как передать им важные идеи информатики? Мы думаем — в игровой форме, на примере сказок, стихов и головоломок.Интересно ли это будет вам, ребята? Понравится ли вам новый сказочный персонаж — веселый, смышленый и задиристый Чип из калькулятора? Ответьте «Пионеру» на эти вопросы. Мы рассчитываем и на вашу помощь, дорогие родители, и ждем от вас и ваших детей откликов на этот раздел и полезных предложений. И еще — последнее. Товарищи родители, не прячьте от ребят калькулятор: эта игрушка гораздо нужнее им, чем вам. И не бойтесь, что они разучатся считать. Калькулятор, особенно программируемый, учит не только считать, он учит думать.

А. Мигдал , Пионер Журнал

Детская образовательная литература / Книги Для Детей
Как говорить, чтобы дети слушали, и как слушать, чтобы дети говорили
Как говорить, чтобы дети слушали, и как слушать, чтобы дети говорили

Проблемы во взаимоотношениях с детьми бывают у всех. «Почему ты не слушаешься, почему так себя ведешь?» — подобные упреки знакомы каждому ребенку. И каждый родитель иногда чувствует бессилие, когда не может «достучаться» до сына или дочери. Но, может быть, все дело в том, что взрослые не всегда знают, КАК донести до ребенка свои мысли и чувства и КАК понять его?Эта книга — разумное, понятное, хорошо и с юмором написанное руководство о том, КАК правильно общаться с детьми (от дошкольников до подростков). Никакой нудной теории! Только проверенные практические рекомендации и масса живых примеров на все случаи жизни!Авторы — всемирно известные специалисты в области отношений родителей с детьми — делятся с читателем как своим собственным опытом (у каждой — трое взрослых детей), так и опытом многочисленных родителей, посещавших их семинары.Книга будет интересна всем, кто хочет прийти к полному взаимопониманию с детьми и навсегда прекратить «конфликты поколений».

Адель Фабер , Элейн Мазлиш

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / Книги Для Детей