Читаем Алиса в стране Смекалки полностью

Теперь нам ясно, каким образом Белый Король узнал, кто был виновен, но каким образом мы можем установить, какой из трех вариантов Белый Рыцарь сообщил Белому Королю? Как известно, Шалтай-Болтай либо спросил Белого Рыцаря, были ли ложны показания двух подсудимых подряд, либо были ли истинны показания двух подсудимых подряд. Первый вопрос не имел бы смысла (так как из трех показаний только одно ложное), поскольку на него Белый Рыцарь ответил бы отрицательно и это не позволило бы Шалтаю-Болтаю установить, какой из трех вариантов был сообщен Белому Королю Белым Рыцарем. Значит, Шалтай-Болтай спросил, были ли истинны показания двух каких-нибудь подсудимых подряд. Если в ответ на его вопрос Белый Король сказал «да», то Шалтай-Болтай исключил бы вариант 2, но так и не смог бы установить виновного. Но раз Шалтай-Болтай определил, кто виновен, то это означает, что в ответ на его вопрос Белый Рыцарь ответил? «нет». Такой ответ позволил Шалтаю-Болтаю понять, что вариант 2 единственно возможный. Следовательно, виновен подсудимый С.

80. Следующий судебный процесс. Это очень простая задача. Так как А сказал правду и обвинил одного из двух других подсудимых, то либо В, либо С должен быть виновен. Следовательно, А невиновен. Если бы каждый из подсудимых обвинял не того, на кого он указал на самом деле, а другого, то В сказал бы правду. Так как мы знаем, что А невиновен, то на процессе В обвинил С. Следовательно, С виновен.

81. Судебный процесс, следующий за следующим. Так как А говорил правду и обвинял либо В, либо С, то либо В, либо С виновен, а А невиновен.

Белый Рыцарь сказал Белому Королю, что С либо лгал, либо говорил правду. Если бы Белому Королю было сказано, что С лгал, то Белый Король не мог бы установить, кто из трех подсудимых виновен, так как либо С мог быть виновным и ложно обвинять А (или В), либо В мог быть виновным и С мог ложно обвинять А. Таким образом, если известно, что С лгал, то не существует способа, позволяющего установить, кто виновен: В или С. С другой стороны, если известно, что С говорил правду, то он не мог обвинять А (поскольку тот невиновен). Следовательно, С обвинял В, а так как С говорил правду, В должен быть виновен. Таким образом, Бармаглот должен был сказать Белому Рыцарю, что С говорил правду. Тогда Белый Рыцарь смог бы установить, что виновным должен быть В.

82. Еще один судебный процесс. Как и в предыдущей задаче, поскольку А говорил правду и обвинял одного из двух подсудимых, А должен быть невиновен. Если Белый Рыцарь узнал от Бармаглота, что С говорил правду, то без всякой дополнительной информации Белый Рыцарь знал бы, что В виновен (как мы видели в решении предыдущей задачи). Но, как известно, Белый Рыцарь не мог без дополнительной информации определить, кто из трех подсудимых виновен. Следовательно, Бармаглот должен был сказать ему, что С лгал. Затем Белый Рыцарь узнал, кого обвинял подсудимый С, и это позволило ему узнать, кто виновен. Если бы Белый Рыцарь узнал от Бармаглота, что С обвинял подсудимого А, то Белый Рыцарь не смог бы определить, кто виновен: В или С. Именно поэтому Белому Рыцарю так важно было услышать от Бармаглота, что С обвинял подсудимого В: это означало, что В должен быть невиновен (так как С лгал), а поскольку А также невиновен, то виновен должен быть С.

83. Еще один случай. Существует 8 вариантов показаний, которые дали в ходе процесса подсудимые А, В и С. Действительно, А мог выступить с двумя вариантами показаний, каждый из которых мог сочетаться с двумя вариантами показаний подсудимого В, поэтому существуют 4 варианта показаний подсудимых А и В. (Перечислим эти варианты: 1) А и В оба признали себя виновными; 2) А признал себя виновным, В заявил о своей невиновности; 3) А заявил о своей невиновности, В признал себя виновным; 4) А и В оба заявили о своей невиновности.) Каждый из четырех вариантов показаний подсудимых А и В приходится на два варианта показаний подсудимого С, поэтому общее число показаний подсудимых А, В и С достигает 8.

В каждом из 8 вариантов показаний подсудимых виновным (по крайней мере в принципе) может быть любой из троих. Следовательно, общее число вариантов всего «расклада» (под «раскладом» мы условимся понимать набор из показаний каждого их троих подсудимых и его фактической виновности или невиновности) достигает 24. Разумеется, если бы мы знали, какой из 24 вариантов соответствует действительности, то нам было бы известно, кто лгал и кто говорил правду. Составим поэтому сводную таблицу всех 24 вариантов расклада. Она понадобится нам для решения не только этой задачи, но и одной из следующих задач. Все необходимые пояснения приведены после таблицы.

Перейти на страницу:

Похожие книги

Игры с Чипом
Игры с Чипом

Цикл детских образовательных статей из журнала "Пионер" за 1986-1987 года.В сказочно-игровой форме для дошкольников и младших школьников даются базовые понятия информатики.Предисловие для ребят и родителейМы приближаемся к новому веку, в котором люди самых разных профессий будут работать на компьютерах — электронно-вычислительных машинах. Как человек должен излагать свои мысли, чтобы его понял компьютер? А как компьютер будет понимать человека? Эти и многие другие интересные задачи ставит информатика. Их придется решать тем, кто сейчас учится в школе, и тем, кто только ходит в детский сад, и тем, кто еще не родился на свет. Им надо научиться мыслить более точно, работать более организованно, чем это удается нам, старшему поколению. В этом году впервые начато обучение школьников основам информатики. Этот предмет преподают в 9—10-х классах, а младшим школьникам пока что удается в лучшем случае поиграть с электронной игрушкой или с калькулятором. Поэтому они видят лишь внешнюю сторону дела: дисплей на жидких кристаллах, кнопки, мелькающие цифры... Но как передать им важные идеи информатики? Мы думаем — в игровой форме, на примере сказок, стихов и головоломок.Интересно ли это будет вам, ребята? Понравится ли вам новый сказочный персонаж — веселый, смышленый и задиристый Чип из калькулятора? Ответьте «Пионеру» на эти вопросы. Мы рассчитываем и на вашу помощь, дорогие родители, и ждем от вас и ваших детей откликов на этот раздел и полезных предложений. И еще — последнее. Товарищи родители, не прячьте от ребят калькулятор: эта игрушка гораздо нужнее им, чем вам. И не бойтесь, что они разучатся считать. Калькулятор, особенно программируемый, учит не только считать, он учит думать.

А. Мигдал , Пионер Журнал

Детская образовательная литература / Книги Для Детей
Как говорить, чтобы дети слушали, и как слушать, чтобы дети говорили
Как говорить, чтобы дети слушали, и как слушать, чтобы дети говорили

Проблемы во взаимоотношениях с детьми бывают у всех. «Почему ты не слушаешься, почему так себя ведешь?» — подобные упреки знакомы каждому ребенку. И каждый родитель иногда чувствует бессилие, когда не может «достучаться» до сына или дочери. Но, может быть, все дело в том, что взрослые не всегда знают, КАК донести до ребенка свои мысли и чувства и КАК понять его?Эта книга — разумное, понятное, хорошо и с юмором написанное руководство о том, КАК правильно общаться с детьми (от дошкольников до подростков). Никакой нудной теории! Только проверенные практические рекомендации и масса живых примеров на все случаи жизни!Авторы — всемирно известные специалисты в области отношений родителей с детьми — делятся с читателем как своим собственным опытом (у каждой — трое взрослых детей), так и опытом многочисленных родителей, посещавших их семинары.Книга будет интересна всем, кто хочет прийти к полному взаимопониманию с детьми и навсегда прекратить «конфликты поколений».

Адель Фабер , Элейн Мазлиш

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / Книги Для Детей