Ампер разработал и применил большое количество экспериментальных устройств, чтобы доказать, что проводники при пропускании через них электрического тока отталкиваются или притягиваются. Важнейший опыт, приведший к одному из самых известных открытий Ампера, касается взаимодействия параллельных проводников. С самого начала своих исследований ученый утверждал, что два проводника притягиваются, если направление пропускаемых через них токов одинаково, и отталкиваются, если направление этих токов является противоположным. Спустя несколько недель после того, как Араго повторил опыт Эрстеда, 9 октября 1820 года, Ампер представил Академии наук эксперимент, изображенный на рисунке 4 на следующей странице, подтверждающий его теорию, согласно которой сила, возникающая между двумя проводниками, имеет электродинамическое происхождение. Однако часть зрителей, присутствовавших при опыте, продолжала считать, что этот эффект связан с обычным электрическим взаимодействием.
После открытия Эрстеда Био и Ампер разработали план исследований. Ученые основывались на разных принципах, но объединяла их общая цель: найти математическое отношение между электрическим током, пропускаемым через проводник, и магнитным полем, которое он производит. Подход Био отличался от подхода Ампера тем, что первый использовал элементарные магниты. Био полагал, что проводник состоит из множества маленьких магнитов, и хотел рассчитать силу, производимую всеми ими в совокупности. Над разработкой математического закона Био работал вместе со своим коллегой по Коллеж де Франс французским физиком Феликсом Саваром (1791-1841). Коллеги разработали метод измерения силы, оказываемой проводником на магнит. Они опирались на опыты Кулона, в которых измерялось колебание магнитной стрелки. В конце октября 1820 года Био заявил Академии наук, что сила воздействия проводника на магнит обратно пропорциональна расстоянию между ними. Свой математический закон он обнародовал в декабре.
Био стремился сформулировать математический закон, описывающий магнитное поле, создаваемое прямолинейным проводником NH в точке М, где находится магнитная стрелка (см. рисунок 5). На рисунке Био проводник NH разрезан на микроскопические поперечные витки (см. рисунок 6). Каждый из них испытывает временное намагничивание своих молекул, которые образуют магнитные стрелки ab, а'b' и так далее.
Био объявил Академии наук о полученных результатах 30 октября: сила воздействия, оказываемого проводником бесконечной длины на полюс магнита, обратно пропорциональна расстоянию МН, отделяющему магнит от проводника. Дополнения, внесенные Лапласом, позволили установить, что один виток катушки N оказывает воздействие, пропорциональное
sincω/r²
Это и есть математический закон, представленный Био Академии наук 18 декабря. Очевидно, что закон обратных квадратов очень напоминает закон всемирного тяготения Ньютона и закон электростатического взаимодействия Кулона. Однако между ними есть существенная разница: сила, производимая одним витком катушки N на М, направлена не по линии NM, а перпендикулярно прямой, соединяющей две точки. Современное математическое выражение закона Био — Савара, также называемого законом Лапласа, имеет вид
dB = μ0
/4∙(I∙ds∙sinω)/r².