Большой труд Эратосфена «География», состоявший из трех книг, не сохранился, но его содержание, а также полемические замечания к нему Гиппарха довольно полно изложены Страбоном. В первой книге этого сочинения Эратосфен дает очерк истории географии, начиная с древнейших времен. При этом он критически высказывается по поводу географических сведений, приводимых «непогрешимым» Гомером; рассказывает о первых географических картах Анаксимандра и Гекатея; выступает в защиту описания путешествия Пифея, неоднократно высмеивавшегося его современниками. Во второй книге Эратосфен приводит доказательства шарообразности Земли, упоминает о своем методе измерения размеров земного шара и развивает соображения об ойкумене, которую он считал островом, со всех сторон окруженным океаном.
На этом основании он впервые высказал предположение о возможности достичь Индию, плывя из Европы на запад. Третья книга представляла собой подробный комментарий к составленной Эратосфеном карте.
Метод, примененный Эратосфеном для определения окружности 3емли, был подробно описан им в специальном сочинении; метод состоял в измерении длины тени, отбрасываемой гномоном в Александрии в тот самый момент когда в Сиене (Ассуане) находившимся приблизительно в том же меридиане, Солнце стоит прямо над головой (Рис. 6). Угол между вертикалью и направлением па Солнце оказался (в Александрии) равным 1/50 полного круга. Считая расстояние между Александрией и Сиеной равным 5000 стадиев (немного менее 800 км[4]
). Эрастофен получил для окружности земного шара приближенное значение 250 000 стадиев. Более точные вычисления дали значение 252 000 стадиев, или 39 690 км, что всего лишь на 310 км отличается от истинной величины. Этот результат Эрастофена оставался непревзойденным вплоть до XVII в.Знаменитый астроном II в. до н. э.
На примере географии мы видим, что даже эта наука, ранее бывшая чисто описательной подверглась в александрийскую эпоху процессу математизации. Еще в большей степени этот процесс был характерен для развития астрономии, механики, оптики. Поэтому мы вправе утверждать, что именно в эту эпоху математика впервые стала признанной царицей наук. А следовательно, прежде чем переходить к другим наукам, целесообразно рассмотреть замечательные достижения эллинистической математики.
Математика
О личности Евклида мы почти ничего не знаем, за исключением того, что он был современником Птолемея I Сотера и преподавал математику - в Александрии. Предполагается, что он получил математическое образование в Афинах (может быть, в Академии?). Судя по тому, что Архимед приводит в одной из своих книг предложение, взятое из «Начал», этот основной труд Евклида был, по-видимому, к тому времени уже хорошо известен. Нелегко оценить вклад, внесенный в математику самим Евклидом, поскольку он, по всей видимости, был не столько творческим гением, подобно Евдоксу или Архимеду, сколько блестящим педагогом и систематизатором. Основное содержание «Начал» Евклида составляют открытия Гиппократа Хиосского, Теэтета, Евдокса и других математиков предшествующей эпохи, причем излагаемому материалу Евклид придал логическую стройность и формальную законченность.
Дошедший до нас текст «Начал» состоит пятнадцати книг, причем две последние были написаны не Евклидом, а добавлены позднее. Кратко резюмируем содержание каждой из них.