Первые четыре книги «Начал» посвящены геометрии на плоскости — в них представлен тот же материал, который, предположительно, уже содержался в книге Гиппократа Хиосского. Из этого, однако, не следует, что в своем изложении Евклид просто повторял Гиппократа. В особенности это относится к I книге, начинающейся с определений, постулатов и аксиом. В числе постулатов имеется знаменитый (пятый) постулат о параллельных линиях, попытки изменения которого привели впоследствии к созданию неевклидовых геометрий. После этого идут теоремы, устанавливающие важнейшие свойства треугольников, параллелограммов, трапеций. В конце книг приводится теорема Пифагора.
Во II книге излагаются основы геометрической алгебры. Произведение двух величин трактуется в ней как прямоугольник, построенный на двух отрезках. Устанавливается дистрибутивность умножения по отношению к сложению (т. е. если a=a1
+a2+a3, то ba=ba1+ba2+ba3). Доказывается ряд важных тождеств, например, (a+b)2=a2+2ab+b2Дается геометрическая формулировка нескольких типов задач, эквивалентных задачам на квадратные уравнения.
III книга посвящена свойствам круга, его касательных и хорд.
Наконец, в IV книге рассматриваются правильные многоугольники. Строятся правильные n-угольники при n=3, 4, 5, 10, 15, причем построение правильного 15-угольника принадлежит, по-видимому, самому Евклиду.
V и VI книги «Начал» отражают вклад Евдокса в теорию отношений и ее применения к решению алгебраических задач. Особой законченностью отличается V книга, посвященная общей теории отношений, охватывающей как рациональные, так и иррациональные величины (о чем мы уже говорили в третьей главе, в разделе, посвященном Евдоксу).
VII, VIII и IX книги посвящены арифметике, т. е. теории целых и рациональных чисел, разработанной, как указывалось выше, пифагорейцами не позднее V в. до н. э. Помимо теорем, относящихся к сложению и умножению целых чисел и умножению их отношений, здесь рассматриваются вопросы теории чисел: вводится «алгоритм Евклида», излагаются основы теории делимости целых чисел, доказывается теорема о том, что существует бесконечное множество простых чисел. Эти три книги написаны, по-видимому, на основе не дошедших до нас сочинений Архита.
X книга, содержащая изложение результатов, полученных Теэтетом, посвящена квадратичным иррациональностям. Дается их классификация (биномиали, апотомы, медиали и т. д.).
В XI книге рассматриваются основы стереометрии; здесь содержатся теоремы о прямых и плоскостях в пространстве, трехмерные задачи на построение и т. д.
В XII книге излагается метод исчерпывания Евдокса, с помощью которого доказываются теоремы, относящиеся к площади круга и к объему шара, а также выводятся соотношения объемов пирамид и конусов с объемами соответствующих призм и цилиндров.
Основные результаты XIII книги, посвященной пяти правильным многогранникам, принадлежат Теэтету.
Позднее к «Началам» были присоединены XIV и XV книги, не принадлежавшие Евклиду, а написанные позже — одна во II в. до н. э, а другая в VI в. н. э. Об их содержании будет сказано ниже.
При всем богатстве материала, включенного в «Начала» Евклида, это сочинение отнюдь не было всеохватывающей энциклопедией античной математики. Так, в него не вошли теоремы о «луночках» Гиппократа Хиосского, а также три знаменитых задачи древности — об удвоении куба, трисекции угла и квадратуре круга, о которых мы говорили во второй главе. Мы не находим в нем также ни единого упоминания конических сечений, теория которых в это время уже начала разрабатываться (в том числе и самим Евклидом).
Были ли у Евклида предшественники в попытках создания дедуктивной системы математики. Безусловно, были. О Гиппократе Хиосском мы уже говорили. Как сообщает неоплатоник Прокл в своих комментариях к «Началам», аналогичные попытки предпринимались также двумя математиками IV века — неким Леоном и Февдием из Магнесии, примыкавшим к платоновской Академии. Евклид, несомненно, был знаком с их работами. Это, однако, нисколько не умаляет его собственных заслуг. Мы не можем считать случайностью, что именно «Начала» сохранились в веках, в то время как труды не посредственных предшественников Евклида были утеряны и забыты, и даже о их содержании не сохранилось никаких сведений. В конечном счете суд истории оказывается, как правило, справедливым.