Громадность этого числа должна была поражать воображение древних, не привыкших оперировать с очень большими числами. По сравнению с ним количество песчинок, которые заполнили бы пустую сферу, равновеликую сфере неподвижных звезд, оказалось равным, согласно расчетам Архимеда, неизмеримо меньшему числу — 1068
. Не все математические сочинения Архимеда дошли до нашего времени. Так книги «Леммы», «О семиугольнике», «и касающихся кругах» известны нам лишь в арабском изложении; некоторые геометрические теоремы, доказанные Архимедом, сохранились в математическом трактате знаменитого среднеазиатского ученого Ал-Бируни (973—1048 гг.); от ряда же других книг (в том числе от трактата «О параллельных линиях») до нас дошли лишь их заглавия. Но и того, что нам известно, достаточно, чтобы оценить Архимеда как величайшего математика древности, явившегося предтечей творцов виршей математики Нового времени.Из других математических работ Аполлония полностью сохранился (в арабском переводе) лишь один небольшой трактат в двух книгах — «О сечении в данном отношении». В нем рассматривается следующая задача: даны две прямые, лежащие в одной плоскости, и точка на каждой из них; через некоторую третью точку надо провести прямую так, чтобы она отсекала на данных прямых, начиная от данных точек, отрезки, которые находились бы друг к другу в заданном отношении. Первая книга трактата рассматривает случай, когда данные прямые параллельны, вторая — когда они пересекаются (рис. 8). Аполлоний показывает, что эта задача сводится к решению некоторого квадратного уравнения.
Аполлоний написал еще два трактата на сходные темы; о них мы знаем по изложению Паппа.
«О сечении с заданной площадью». В этом сочинении рассматривалась задача, аналогичная предыдущей: оба отсекаемых отрезка должны, при умножении их друг на друга, дать прямоугольник заданной площади.
«Об определенном сечении». На прямой даны четыре точки: A, B, С и D. Определить точку Р, лежащую на той же прямой, так, чтобы произведение АР•СР имело заданное отношение к BP•DP.
Несколько трактатов Аполлония известны нам по ссылкам на них Паппа и других позднейших авторов.
«О касаниях». Здесь разбирается знаменитая задача Аполлония: даны три объекта, каждый из которых может быть точкой, прямой или окружностью. Найти окружность, которая проходит через каждую из данных точек и касается заданных прямых или окружностей.
«О плоских геометрических местах». В этом трактате Аполлоний доказывал ряд теорем, в которых рассматривались геометрические места, относящиеся к прямым и окружностям. Некоторые из этих теорем приводятся Паппом. Интересно, что в этом трактате впервые используются инверсия на плоскости и геометрия как преобразования, переводящие «плоские места» (прямые и окружности) в такие же «места».
«О сравнении додекаэдра и икосаэдра». Эта книга упоминается Гипсиклом во введении к так называемой XIV книге «Начал» Евклида. В ней доказывалось, что если додекаэдр и икосаэдр вписаны в один и тот же шар, то их поверхности имеют то же отношение, что и их объемы.
Известны названия еще некоторых сочинений Аполлония, но о их содержании нет определенных сведений. Среди них — работа «О неупорядоченных иррациональностях», в которой, как можно предполагать, классификация иррациональных величин, содержащаяся в «Началах» Евклида, была распространена на более широкие классы иррациональностей. К сожалению, мы не располагаем данными, которые позволили бы судить, насколько далеко Аполлоний продвинулся в этой области.