Наконец, следует назвать
Диокл, Зенодор и Гипсикл (и вообще все математики эллинистической эпохи, жившие после Аполлония) обычно именуются «эпигонами». Они действительно были эпигонами — в том смысле, что к основному богатству античной математики, накопленному гениями IV—III вв. до н. э., они добавили лишь мелочи, не выходившие за рамки уже существовавших идей и теорий.
Астрономия
В предыдущей главе, излагая достижения античной астрономии классического периода, мы дошли до Гераклида Понтийского, предложившего модель мира, в которой. Земля совершала суточные обороты вокруг своей оси, а Меркурий и Венера вращались вокруг Солнца. Система Гераклида еще не снимала всех трудностей, связанных с изменением яркости планет. Это изменение было характерно не только для Венеры, но и для Марса: находясь в противостоянии с Солнцем, Марс имел значительно большую яркость, чем в соединениях, причем эти противостояния и соединения могли происходить в любых местах зодиакального пояса. Объяснить это можно было двояко: либо Марс вращается вокруг Солнца, а Солнце, в свою очередь, совершает обороты вокруг Земли, либо же Земля, находясь между Солнцем и Марсом, вращается вокруг Солнца. Первый путь был избран уже в Новое время знаменитым датским астрономом Тихо Браге: у него все пять видимых планет вращались вокруг Солнца, а Солнце — в соответствии с традиционной геоцентрической точкой зрения — вращалось вокруг Земли. Второе из указанных допущений; означавшее переход к гелиоцентрической системе мира, было сделано великим астрономом древности — Аристархом.
Каким образом получил Аристарх эти значения, вообще говоря, очень сильно отличающиеся от действительных? В качестве примера рассмотрим первое из приведенных соотношений — соотношение между расстояниями от Земли до Солнца и от Земли до Луны. Аристарх фиксирует тот момент времени, когда Луна находится строго в первой (или последней) четверти, т. е. когда мы видим освещенной половину лунного диска. Очевидно, что в этот момент прямые, соединяющие Луну с Землей и Луну с Солнцем, образуют прямой угол. Затем Аристарх определяет угол а, который в этот же момент времени образует прямые, соединяющие Солнце с Луной и Землей (рис. 11). Этот угол, согласно его наблюдениям, оказывается равным одной тридцатой прямого угла (т. е. в нынешних обозначениях a=3°). Задача состоит в том, чтобы определить, во сколько раз расстояние от Земли до Солнца (3.—С.) превосходит расстояние от Земли до Луны (3.—Л.) или, если пользоваться тригонометрическими терминами — в определении sin а. С помощью соответствующих геометрических построений Аристарх находит неравенства, заключающие отношение (3.—С.)/(3.—Л.) в достаточно узкие границы. А именно, он получает: