Но даже из того, что мы знаем о достижениях Аполлония — то ли из его оригинальных текстов, то ли из свидетельств о нем математиков более позднего времени — мы вправе заключить, что в его лице эллинистическая эпоха дала миру первоклассного математического гения. В трудах Аполлония греческая геометрическая алгебра достигла высшего расцвета. После него это направление математической науки начинает постепенно хиреть и иссякать. Для дальнейшего успешного развития античная математика нуждалась в новых импульсах; эти импульсы, однако, нельзя было почерпнуть в тогдашней действительности.
«Малые» математики эпохи эллинизма
Наряду с гигантскими фигурами Евклида, Архимеда и Аполлония в Александрии и в других культурных центрах III—II вв. до н. э. жили и работали математики меньшего калибра, не давшие новых идей и не разработавшие принципиально новых теорий. И все же некоторые из них заслуживают того, чтобы их имена не были преданы забвению.
О Кононе Самосском, старшем друге Архимеда, мы уже упоминали выше. О его собственных математических достижениях нам ничего не известно; впрочем, он был, по-видимому, скорее астрономом, чем математиком.
Математические труды другого друга Архимеда —
Старший современник Аполлония,
Как рассказывают источники, Никомед очень гордился этой кривой и построил прибор для ее черчения. Он применил свою кривую для решения задач об удвоении куба и трисекции угла.
Ко второй половине II в. до н. э. относится творчество Диокла, изучавшего другую алгебраическую кривую — циссоиду. Она строится следующим образом. Даны два взаимно перпендикулярных диаметра круга АВ и CD. Пусть точки К и L удаляются от B в обе стороны, все время, однако, оставаясь на равном расстоянии от диаметра АВ. Из точки L опустим на диаметр CD перпендикуляр. Пересечение этого перпендикуляра с прямой KD даст нам точку, которая, по мере удаления К и L от В, будет описывать циссоиду (рис. 10). С помощью этой кривой Диокл также решил задачу об удвоении куба. Кроме того, он предложил свое решение задачи Архимеда о делении шара в заданном отношении; это решение, однако, было утеряно еще в древности.
Между III в. до н. э. и па-чалом нашей эры жил
1) что из двух правильных многоугольников с равными периметрами большую площадь будет иметь прямоугольник с большим числом сторон;
2) что если окружность круга и периметр правильного многоугольника равны, то площадь круга будет всегда больше правильного многоугольника;
3) что из всех многоугольников равного периметра и с равным числом сторон наибольшую площадь будет иметь правильный многоугольник.
Следствие этих теорем состоит в том, что из всех изопериметрических фигур круг будет иметь наибольшую площадь. Зенодор также утверждал, что из всех пространственных тел с одинаковой поверхностью наибольшим объемом будет обладать шар. Это, вообще говоря, правильное предложение, им не было доказано; он сумел доказать лишь следующие теоремы (которые в его сочинения шли под номерами 13 и 14):
1) Если правильный многоугольник с четным числом сторон вращать вокруг самой длинной его диагонали, то получится тело, ограниченное коническими поверхностями, которое будет меньше шара с такой же поверхностью.
2) Каждый из пяти правильных многогранников будет меньше шара с той же поверхностью.