Читаем Античная наука полностью

Но даже из того, что мы знаем о достижениях Аполлония — то ли из его оригинальных текстов, то ли из свидетельств о нем математиков более позднего времени — мы вправе заключить, что в его лице эллинистическая эпоха дала миру первоклассного математического гения. В трудах Аполлония греческая геометрическая алгебра достигла высшего расцвета. После него это направление математической науки начинает постепенно хиреть и иссякать. Для дальнейшего успешного развития античная математика нуждалась в новых импульсах; эти импульсы, однако, нельзя было почерпнуть в тогдашней действительности.

«Малые» математики эпохи эллинизма

Наряду с гигантскими фигурами Евклида, Архимеда и Аполлония в Александрии и в других культурных центрах III—II вв. до н. э. жили и работали математики меньшего калибра, не давшие новых идей и не разработавшие принципиально новых теорий. И все же некоторые из них заслуживают того, чтобы их имена не были преданы забвению.

О Кононе Самосском, старшем друге Архимеда, мы уже упоминали выше. О его собственных математических достижениях нам ничего не известно; впрочем, он был, по-видимому, скорее астрономом, чем математиком.

Математические труды другого друга Архимеда — Эратосфена Киренского — были не столь значительны, как его работы в области географии и хронологии, но они все же свидетельствовали об оригинальном и творческом уме их автора. Так, Эратосфен дал механическое решение знаменитой задачи об удвоении куба; это решение было высечено на стене одного из александрийских храмов. Он занимался теорией чисел и предложил оригинальный способ выделить простые числа из последовательности всех нечетных чисел (так называемое «решето Эратосфена»). В диалоге «Платоник» он изложил основы античной арифметики, где, в частности, были сформулированы правила образования различных пропорций.

Рис. 9. Конхоида (или кохлоида) Никомеда. При любом А (меньше 90°) AB=DE


Старший современник Аполлония, Никомед, известен главным образом тем, что открыл новую алгебраическую кривую — конхоиду. Она определяется как геометрическое место точек, образуемое концами лучей, исходящих из точки О и пересекающих прямую, причем расстояние от этой прямой до конца луча остается всегда равным а (рис 9). В полярных координатах уравнение этой кривой имеет вид:

Как рассказывают источники, Никомед очень гордился этой кривой и построил прибор для ее черчения. Он применил свою кривую для решения задач об удвоении куба и трисекции угла.

Ко второй половине II в. до н. э. относится творчество Диокла, изучавшего другую алгебраическую кривую — циссоиду. Она строится следующим образом. Даны два взаимно перпендикулярных диаметра круга АВ и CD. Пусть точки К и L удаляются от B в обе стороны, все время, однако, оставаясь на равном расстоянии от диаметра АВ. Из точки L опустим на диаметр CD перпендикуляр. Пересечение этого перпендикуляра с прямой KD даст нам точку, которая, по мере удаления К и L от В, будет описывать циссоиду (рис. 10). С помощью этой кривой Диокл также решил задачу об удвоении куба. Кроме того, он предложил свое решение задачи Архимеда о делении шара в заданном отношении; это решение, однако, было утеряно еще в древности.

Рис. 10. Построение циссоиды


Между III в. до н. э. и па-чалом нашей эры жил Зенодор — автор трактата «Об изопериметрических фигурах», где в частности, было показано:

1) что из двух правильных многоугольников с равными периметрами большую площадь будет иметь прямоугольник с большим числом сторон;

2) что если окружность круга и периметр правильного многоугольника равны, то площадь круга будет всегда больше правильного многоугольника;

3) что из всех многоугольников равного периметра и с равным числом сторон наибольшую площадь будет иметь правильный многоугольник.

Следствие этих теорем состоит в том, что из всех изопериметрических фигур круг будет иметь наибольшую площадь. Зенодор также утверждал, что из всех пространственных тел с одинаковой поверхностью наибольшим объемом будет обладать шар. Это, вообще говоря, правильное предложение, им не было доказано; он сумел доказать лишь следующие теоремы (которые в его сочинения шли под номерами 13 и 14):

1) Если правильный многоугольник с четным числом сторон вращать вокруг самой длинной его диагонали, то получится тело, ограниченное коническими поверхностями, которое будет меньше шара с такой же поверхностью.

2) Каждый из пяти правильных многогранников будет меньше шара с той же поверхностью.

Перейти на страницу:

Похожие книги

1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука
100 знаменитых памятников архитектуры
100 знаменитых памятников архитектуры

У каждого выдающегося памятника архитектуры своя судьба, неотделимая от судеб всего человечества.Речь идет не столько о стилях и течениях, сколько об эпохах, диктовавших тот или иной способ мышления. Египетские пирамиды, древнегреческие святилища, византийские храмы, рыцарские замки, соборы Новгорода, Киева, Москвы, Милана, Флоренции, дворцы Пекина, Версаля, Гранады, Парижа… Все это – наследие разума и таланта целых поколений зодчих, стремившихся выразить в камне наивысшую красоту.В этом смысле архитектура является отражением творчества целых народов и той степени их развития, которое именуется цивилизацией. Начиная с древнейших времен люди стремились создать на обитаемой ими территории такие сооружения, которые отвечали бы своему высшему назначению, будь то крепость, замок или храм.В эту книгу вошли рассказы о ста знаменитых памятниках архитектуры – от глубокой древности до наших дней. Разумеется, таких памятников намного больше, и все же, надо полагать, в этом издании описываются наиболее значительные из них.

Елена Константиновна Васильева , Юрий Сергеевич Пернатьев

История / Образование и наука
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука