Читаем Апология математики (сборник статей) полностью

Мы, разумеется, не собираемся здесь доказывать нерешимость задачи о квадратуре круга. Можно было бы попытаться в доступных широкому читателю терминах наметить общее направление доказательства, но мы и этого делать не будем, потому что это вывело бы нас за пределы того, что мы считаем общекультурным математическим минимумом. А вот самоё формулировку обсудим. Казалось бы, что тут обсуждать, формулировка достаточно ясная? Сейчас мы увидим, что на самом деле её смысл нуждается в разъяснениях. Приносим извинения тем, кто почтёт эти разъяснения занудными и излишними. И надеемся встретить иного читателя, который найдёт здесь пищу для размышлений и оценит то обстоятельство, что именно математика такую пищу поставляет.

Каждая задача на построение предполагает наличие некоторой исходной геометрической фигуры и состоит в требовании указать способ, который позволяет построить новую фигуру, связанную с исходной указанными в задаче соотношениями. Так, в задаче о середине отрезка исходной фигурой был отрезок, а новой – точка, являющаяся его серединой; в задаче о квадратуре круга исходная фигура – круг, а новая – квадрат, имеющий ту же площадь. Вот ещё пример: по данной стороне построить правильный треугольник (т. е. такой, у которого одинаковы все стороны и все углы). Исходной фигурой здесь служит отрезок, а новой – треугольник, у которого все стороны конгруэнтны[45] этому отрезку. Надеемся, что читатель легко решит эту задачу. Решение будет приведено в конце главы.

Можно построить и правильный 17-угольник, но это уже не столь просто. А вот задача о построении правильного семиугольника не имеет решения – это в конце XVIII в. доказал один из величайших математиков всех времён Карл Фридрих Гаусс (Johann Carl Friedrich Gauß, 1777–1855), уже упоминавшийся в главе 1 в связи с неевклидовой геометрией. До Гаусса существование таких задач на построение, решить которые невозможно, было лишь правдоподобной гипотезой. Он же указал способ построения правильного 17-угольника.

Вот ещё пример весьма известной и древней задачи на построение – задача о трисекции угла. В ней требуется для каждого угла построить другой угол, составляющий треть исходного. Для некоторых углов специального вида, например для прямого угла, построение трети не составляет труда. Однако в середине XIX в. было доказано, что некоторые углы невозможно построить, оперируя линейкой и циркулем. Оказалось, в частности, что невозможно построить углы в 10° и 20° и, следовательно, осуществить трисекцию углов в 30° и 60°. Тем самым была установлена неразрешимость задачи о трисекции угла.

Итак, в каждой задаче на построение требуется указать некоторый способ построения. Когда такой способ предъявляется, как для задачи о середине отрезка, он [способ] обычно не вызывает сомнений. Но, когда утверждается, что такого способа нет, как это утверждается для квадратуры круга или для трисекции угла, возникает необходимость уточнить, чего именно нет.

Всякий способ построения состоит в указании некоторой последовательности разрешённых операций. Последовательность эта – своя для каждой задачи. Сам же перечень разрешённых операций один и тот же для всех задач на построение. Он весьма невелик, и мы сейчас с ним познакомимся.

Прежде всего это операции, выполняемые при помощи линейки. Читателя может удивить множественное число. На что ещё годна линейка, кроме черчения прямой? А вот на что: чертить луч, т. е. полупрямую; чертить отрезок. Более точно, разрешается, приложив линейку к двум уже построенным точкам, начертить отрезок между этими точками; или луч, начинающийся в одной из этих точек и проходящий через другую; или прямую, проходящую через эти две точки. «Господи! – воскликнет читатель. – Да это же и так ясно! Стоило ли тратить слова на такую очевидность?» Еще как стоило. Объясню почему. Рассмотрим ещё одну операцию, выполнить которую не сложнее, чем провести прямую через две точки, но которая, однако же, не входит в число разрешённых: через данную точку провести касательную к данной окружности. Начертив окружность и взяв точку вне круга, читатель убедится, как легко провести касательную, используя реальную, деревянную или металлическую, линейку. Тем не менее в перечень разрешённых операций проведение касательной не включено. Мы только что прибегли к важному, как нам кажется, приёму обучения понятиям: надо приводить примеры не только того, что входит в объём вводимого понятия, но и того, что в его объём не входит. Так, чтобы на примерах объяснить, что такое чётное число, надо не только сказать, что числа 0, 2, 4, 6 и т. д. являются чётными, но и упомянуть, что числа 1, 3, 5, 7 и т. д. чётными не являются; чтобы объяснить марсианину, что такое кошка, надо предъявить ему не только несколько кошек, но также и несколько собак, сообщив, что это не кошки.

Перейти на страницу:

Похожие книги

1993. Расстрел «Белого дома»
1993. Расстрел «Белого дома»

Исполнилось 15 лет одной из самых страшных трагедий в новейшей истории России. 15 лет назад был расстрелян «Белый дом»…За минувшие годы о кровавом октябре 1993-го написаны целые библиотеки. Жаркие споры об истоках и причинах трагедии не стихают до сих пор. До сих пор сводят счеты люди, стоявшие по разные стороны баррикад, — те, кто защищал «Белый дом», и те, кто его расстреливал. Вспоминают, проклинают, оправдываются, лукавят, говорят об одном, намеренно умалчивают о другом… В этой разноголосице взаимоисключающих оценок и мнений тонут главные вопросы: на чьей стороне была тогда правда? кто поставил Россию на грань новой гражданской войны? считать ли октябрьские события «коммуно-фашистским мятежом», стихийным народным восстанием или заранее спланированной провокацией? можно ли было избежать кровопролития?Эта книга — ПЕРВОЕ ИСТОРИЧЕСКОЕ ИССЛЕДОВАНИЕ трагедии 1993 года. Изучив все доступные материалы, перепроверив показания участников и очевидцев, автор не только подробно, по часам и минутам, восстанавливает ход событий, но и дает глубокий анализ причин трагедии, вскрывает тайные пружины роковых решений и приходит к сенсационным выводам…

Александр Владимирович Островский

Публицистика / История / Образование и наука
Сталин. Битва за хлеб
Сталин. Битва за хлеб

Елена Прудникова представляет вторую часть книги «Технология невозможного» — «Сталин. Битва за хлеб». По оценке автора, это самая сложная из когда-либо написанных ею книг.Россия входила в XX век отсталой аграрной страной, сельское хозяйство которой застыло на уровне феодализма. Три четверти населения Российской империи проживало в деревнях, из них большая часть даже впроголодь не могла прокормить себя. Предпринятая в начале века попытка аграрной реформы уперлась в необходимость заплатить страшную цену за прогресс — речь шла о десятках миллионов жизней. Но крестьяне не желали умирать.Пришедшие к власти большевики пытались поддержать аграрный сектор, но это было технически невозможно. Советская Россия катилась к полному экономическому коллапсу. И тогда правительство в очередной раз совершило невозможное, объявив всеобщую коллективизацию…Как она проходила? Чем пришлось пожертвовать Сталину для достижения поставленных задач? Кто и как противился коллективизации? Чем отличался «белый» террор от «красного»? Впервые — не поверхностно-эмоциональная отповедь сталинскому режиму, а детальное исследование проблемы и анализ архивных источников.* * *Книга содержит много таблиц, для просмотра рекомендуется использовать читалки, поддерживающие отображение таблиц: CoolReader 2 и 3, ALReader.

Елена Анатольевна Прудникова

Публицистика / История / Образование и наука / Документальное
Революция 1917-го в России — как серия заговоров
Революция 1917-го в России — как серия заговоров

1917 год стал роковым для Российской империи. Левые радикалы (большевики) на практике реализовали идеи Маркса. «Белогвардейское подполье» попыталось отобрать власть у Временного правительства. Лондон, Париж и Нью-Йорк, используя различные средства из арсенала «тайной дипломатии», смогли принудить Петроград вести войну с Тройственным союзом на выгодных для них условиях. А ведь еще были мусульманский, польский, крестьянский и другие заговоры…Обо всем этом российские власти прекрасно знали, но почему-то бездействовали. А ведь это тоже могло быть заговором…Из-за того, что все заговоры наложились друг на друга, возник синергетический эффект, и Российская империя была обречена.Авторы книги распутали клубок заговоров и рассказали о том, чего не написано в учебниках истории.

Василий Жанович Цветков , Константин Анатольевич Черемных , Лаврентий Константинович Гурджиев , Сергей Геннадьевич Коростелев , Сергей Георгиевич Кара-Мурза

Публицистика / История / Образование и наука