При помощи циркуля выполняют такие операции. Разрешается, установив иглу циркуля в одну уже построенную точку, а стило – в другую уже построенную точку, начертить окружность. И даже более общо: разрешается, установив иглу и стило в две уже построенные точки, не меняя раствора циркуля, перенести иглу в третью уже построенную точку и начертить окружность.
Разрешается находить пересечения уже построенных прямых, лучей, отрезков, окружностей и дуг окружностей (но не всяких дуг, а расположенных между двумя уже построенными точками).
Наконец, разрешается совершать так называемый
Только теперь, после описания всех разрешённых операций, обретает точный смысл утверждение о нерешимости той или иной задачи на построение, в частности задачи о квадратуре круга. Отсутствие решения означает здесь отсутствие такой цепочки разрешённых операций, которая приводила бы от круга к квадрату той же площади.
Заметим, что сам перечень разрешённых операций в значительной степени обусловлен историческими причинами и, вообще говоря, мог бы быть другим. Например, можно было бы включить в число разрешённых операций построение касательной, о котором говорилось выше. (Заметим, кстати, что это не дало бы ничего принципиально нового, потому что касательную можно построить, подобрав подходящую цепочку разрешённых операций из старого перечня.) Можно было бы включить в число разрешённых операций вычерчивание эллипса, ведь устройство для его вычерчивания лишь немногим сложнее циркуля. (Достаточно вбить два гвоздя в фокусы будущего эллипса и протянуть между ними нить, длина которой больше расстояния между фокусами. Зацепим нить стилом и натянем. Перемещая стило так, чтобы нить оставалась натянутой, получим эллипс.) Да лёгкость выполнения разрешённой операции не должна нас заботить: строго говоря, мы вправе объявить разрешённой любую операцию по нашему усмотрению. Перечень разрешённых операций, с чисто логической точки зрения, достаточно произволен. Однако, будучи выбран, он уже не меняется. Полезная аналогия – свод юридических актов. С чисто логической, опять же, точки зрения законы произвольно устанавливаются законодателем, но будучи принятыми, они уже не подлежат изменению, хотя бы на определённый период. Во всяком случае так должно быть.
Объясним теперь, почему задачам на построение уделено здесь такое внимание. На их примере мы пытались продемонстрировать некоторые математические представления принципиального характера, представления, которые можно отнести к философии математики, а то и к философии вообще:
1. Задача, или проблема, всегда есть требование что-то найти, указать, построить.
2. Необходимо уточнять, в пределах какого класса объектов мы ищем решение задачи.
Иногда этот класс состоит из объектов довольно простой (честнее было бы сказать – довольно привычной) природы: четвёрок чисел в проблеме Ферма (если ставится задача опровергнуть гипотезу Ферма), отрезков в проблеме соизмеримости (если ставится задача найти общую меру). Но случается, что его составляют довольно-таки специфические объекты вроде цепочек операций в задачах на построение.
3. Уточнять особенно необходимо, если задача нерешима.
4. Представление о разрешённой операции в общем виде шире сферы задач на построение.
Оно существенно и для компьютерной науки (computer science), и для компьютерной практики, а именно для программирования. Каждый компьютер имеет свой набор разрешённых операций, а каждая компьютерная программа есть некоторая цепочка операций, выбранных из этого набора.
Именно в силу философского аспекта задачи на построение должны занимать достойное место в школьном курсе геометрии. Мы не имеем в виду сложных задач, требующих зачастую большой изобретательности, – они должны изучаться в специализированных математических классах. Нет, речь идет о самых простых задачах вроде задачи на построение правильного треугольника или задачи на нахождение середины отрезка.