Игровыми принадлежностями будут служить пластинки, похожие на костяшки, что используются при игре в домино. Как и костяшка домино, каждая пластинка разделена пополам чертой. В каждой половине что-то написано. Отличие от домино заключается в том, чтó именно написано. В случае домино в каждой из половин точками фиксируется число очков от 0 до 6. В нашем случае в каждой из половин записывается цепочка из букв
Изображённые на рис. 1 четыре пластинки, в том порядке, как они показаны, обозначим – для дальнейших ссылок – буквами
Теперь – сама игра. Она состоит в следующем. В средствах массовой информации объявляется некоторый конкретный набор пластинок. Далее предлагается, воспроизводя каждую из пластинок набора в необходимом количестве, приложить пластинки друг к другу так, чтобы верхняя и нижняя строчки совпали друг с другом. Первым пяти приславшим решения будет выплачен внушительный приз.
Поясним сказанное на примерах. Пусть объявленный набор содержит всего только одну пластинку
Итак, набор объявлен. Все хотят получить приз. Но, прежде чем пытаться найти такое расположение пластинок, при котором верхняя и нижняя строки окажутся одинаковыми, желательно узнать, возможно ли такое расположение в принципе. Ведь если оно невозможно, то бесперспективно его искать, это будет пустой потерей времени. Так вот, оказывается, что не существует никакого эффективного способа это узнать. Не существует такого алгоритма (он не просто неизвестен – его нет), который позволял бы для любого объявленного набора пластинок узнать, имеется ли решение, т. е. можно или нельзя сложить пластинки требуемым образом. Узнать, к какой из двух категорий относится каждый отдельно взятый набор пластинок – к той, для которой решения имеются, или же к той, для которой решений нет, – это сугубо творческая задача, своя для каждого набора, а общий метод нахождения ответа для всех таких задач отсутствует.
Глава 7
Парадокс Галилея, эффект Кортасара и понятие количества
В детстве меня иногда посещал кошмар. Мне представлялось большое число стульев (наглядно – в виде рядов в партере летнего театра). И вот их начинают пересчитывать. Получают некоторое число. Затем пересчитывают в другом порядке и получают другое число. Кошмар заключался в том, что оба числа верны.
Только в университете я узнал, что невозможность описанного составляет предмет особой и притом не слишком просто доказываемой теоремы. А потом прочёл «Записи в блокноте» Хулио Кортасара. Там говорилось о произведённой в 1946-м или 1947 г. операции по учёту пассажиров на одной из линий метро Буэнос-Айреса: