‹…› Было установлено точное количество пассажиров, в течение недели ежедневно пользующихся метро. ‹…› Учёт производился с максимальной строгостью у каждого входа и выхода. ‹…› В среду результаты исследований были неожиданными: из вошедших в метро 113 987 человек на поверхность вышли 113 983. Здравый смысл подсказывал, что в расчётах произошла ошибка, поэтому ответственные за проведение операции объехали все места учёта, выискивая возможные упущения. ‹…› Нет необходимости добавлять, что никто не обнаружил мнимой ошибки, из-за которой предполагались (и одновременно исключались) четверо исчезнувших пассажиров.
В четверг всё было в порядке: сто семь тысяч триста двадцать восемь жителей Буэнос-Айреса, как обычно, появились, готовые к временному погружению в подземелье. В пятницу (теперь, после принятых мер, считалось, что учёт ведется безошибочно) число людей, вышедших из метро, превышало на единицу число вошедших[48]
.При дальнейшем чтении я, к сожалению, обнаружил, что Кортасар предлагает некое рациональное объяснение изложенного им парадокса; в этом очевидное отличие Кортасара от его старшего соотечественника Борхеса (влияние коего Кортасар, несомненно, испытал): Борхес не стал бы искать рационального оправдания. «К сожалению» сказано потому, что поначалу мне показалось, будто в рассказе выражена глубокая идея о возможности, хотя бы в фантазии, следующего эффекта: при очень большом количестве предметов это количество не меняется при добавлении или убавлении сравнительно небольшого их числа. И хотя, повторяю, я ошибался, когда приписывал Кортасару открытие и опубликование этого воображаемого эффекта, давайте всё же будем называть его для краткости
Бесконечное вообще следует – в понятийном аспекте – трактовать как упрощённое представление о конечном, но очень большом. А бывает ли вообще бесконечное количество предметов? Бывает ли оно в физической реальности, никто не знает. Количество звёзд во Вселенной – конечно оно или бесконечно? Мнения расходятся, и проверить, кто прав, довольно затруднительно. В реальности же идеальной – да, бывает. Например, бесконечен натуральный ряд, т. е. ряд натуральных чисел 1, 2, 3, 4, …. Предуведомим для ясности, что в этой главе, вплоть до особого предупреждения, никаких других чисел мы рассматривать не будем, а потому натуральные числа будут именоваться просто числами.
Натуральный ряд представляет собой, пожалуй, наиболее простой пример бесконечной совокупности, или, как говорят математики, бесконечного множества. И уже в нём можно наблюдать некоторые парадоксальные явления: в частности, нарушение древней философемы «Целое больше части». На это обратил внимание Галилей, описавший ситуацию с полной отчётливостью и наглядностью. В 1638 г. вышла его книга «Беседы и математические доказательства…». Изложение в духе того времени выглядело как запись бесед, которые в течение нескольких дней вели между собою вымышленные персонажи. В первый же день была затронута тема бесконечности, в том числе применительно к натуральному ряду. Послушаем, чтó говорят участники беседы.