Сделав корпус машины более функциональным, мы сможем контролировать ее с помощью алгоритмов различного типа. Я надеюсь, что мягкая робототехника продвинет вперед область, которая находилась в состоянии стагнации много лет. Но пока, несмотря на большой прогресс, нам еще далеко до возможностей, которыми обладают природные системы, то есть люди или животные.
М. Ф.: В каком направлении, на ваш взгляд, следует двигаться для создания сильного ИИ? И сколько времени могут занять эти разработки?
Д. Р.: Работа над ИИ ведется более 60 лет. Если бы основатели отрасли смогли увидеть то, что сейчас считается крупными достижениями, они были бы разочарованы. Большого прогресса мы пока не добились. И я не думаю, что в ближайшем будущем имеет смысл говорить о сильном ИИ.
Когда в массмедиа говорят об ИИ, зачастую авторы не понимают, что это такое, имея в виду машинное обучение или даже глубокое обучение. Эта тема очеловечена из-за терминов «интеллект» и «обучение», которые ассоциируются с людьми. Однако в процессе обучения, чтобы опознавать кофейные чашки, система как бы говорит себе: «Данная совокупность пикселов, которая на этой фотографии представляет кофейную чашку, такая же, как на других изображениях, помеченных как кофейные чашки». При этом она не имеет ни малейшего представления о том, что такое кофейная чашка. Разрыв между человеческим и машинным интеллектом огромен. Проблема понимания интеллекта сейчас одна из самых актуальных. Решение, скорее всего, лежит на стыке нейробиологии, когнитивистики и computer science.
М. Ф.: Может ли произойти какой-то прорыв, который позволит резко двинуться вперед?
Д. Р.: Это возможно. Например, мы сейчас пытаемся понять, можно ли создать робота, который будет адаптироваться к людям. Ищем способы распознавать и классифицировать мозговую деятельность.
Классификации подлежит реакция человека на сигнал, который называется «потенциалом, связанным с ошибкой». Этот сигнал мозга есть у всех людей. Его позволяют зафиксировать электроды в шлеме ЭЭГ. Можно представить ситуацию, когда оператор-человек наблюдает за работой роботов, и если он замечает сделанную роботом ошибку, то через специальное приложение передается сигнал, и робот корректирует свое поведение. Подобный проект уже начал свою работу.
Шлем ЭЭГ состоит из 48 электродов, установленных на голове человека. Эта механическая система напоминает о том, что когда-то компьютеры использовали механические переключатели. При этом у нас есть возможность с помощью инвазивных процедур подключаться к нейронам на уровне нервных клеток. То есть в мозг втыкаются зонды, позволяющие точно определить активность на нервном уровне. Сейчас существует большой разрыв между тем, что можно сделать извне и инвазивно. И мне интересно, произойдет ли в какой-то момент, согласно закону Мура, какой-то прорыв, который позволит воспринимать мозговую активность с более высоким разрешением.
М. Ф.: Какие опасности несет в себе эта технология? Например, не приведет ли она к массовой безработице? Или вы считаете, что люди сумеют адаптироваться?
Д. Р.: Ситуация на рынке труда менялась на протяжении всей истории. Современные технологии позволяют автоматизировать рутинную физическую работу с повторяющимися операциями и работу с данными. Меня это очень вдохновляет, потому что технологии могут освободить наше время для более интересных задач. Например, я обсуждала с физиотерапевтами автономную инвалидную коляску. Они очень рады ее появлению, потому что до сих пор врачу приходилось идти к кровати пациента, усаживать его в инвалидную коляску и везти в тренажерный зал, где проходили занятия. Через час пациента нужно отвезти обратно. То есть изрядное время уходило на перемещения. А теперь представьте, что физиотерапевт может все время находиться в спортзале, куда пациентов доставляет автономное инвалидное кресло. Кроме того, гораздо проще проанализировать, какие профессии могут исчезнуть, чем представить, какие профессии могут появиться. Например, в XX в. в Соединенных Штатах число работающих по найму в сельском хозяйстве упало с 4 до 2 %. В начале века никто не догадывался, что так случится. При этом вспомните, что всего 10 лет назад, когда начался расцвет компьютерной индустрии, никто не прогнозировал уровень занятости в социальных сетях, в магазинах приложений, в облачных вычислениях, и даже в таких вещах, как консультирование в колледжах.
М. Ф.: То есть вы верите, что новые рабочие места компенсируют исчезновение старых?