Когда я поступил в университет, Зимбабве уже была независимой. Я получил степень бакалавра в области электротехники с уклоном в математику и computer science. Именно тогда приглашенный исследователь из Университета Торонто привлек меня к проекту по нейронным сетям. Я узнал о методе обратного распространения Румельхарта и использовании сигмоид в качестве функций активации.
Я очень старался и в результате получил стипендию Родса для поступления в Оксфордский университет. Там я работал в Исследовательской группе по программированию под руководством Энтони Хоара – изобретателя алгоритма сортировки. Магистерскую диссертацию по математике я защищал на материале алгоритмов. От идеи стать космонавтом я отказался, но думал, что работа в сфере робототехники и ИИ приближает меня к науке о космосе.
Я попал в Исследовательскую группу по робототехнике в Оксфорде, где фактически велась работа над ИИ, но в то время этот термин воспринимался негативно. Был конец так называемой «зимы ИИ» после неоправданных ожиданий. Наша деятельность называлась как угодно – машинное восприятие, машинное обучение, робототехника или просто нейронные сети. Сейчас ситуация ровно противоположная. Все хотят добавить термин ИИ в описание своей работы.
М. Ф.: Когда все это происходило?
Д. М.: Работу над докторской диссертацией я начал в 1991 г. и вместе с Эндрю Блейком и Лайонелом Тарасенко работал над нейронными сетями. Майкл Брэйди, теперь сэр Майкл, работал над машинным зрением. Моим руководителем стал Хью Даррант-Уайт, работавший над распределенным ИИ и роботизированными системами. Вместе мы создали несколько автономных транспортных средств и написали об этом книгу.
Мне довелось сотрудничать с командой Лаборатории реактивных двигателей NASA, работавшей над марсоходом. Их интересовали системы машинного восприятия. Космические впечатления!
М. Ф.: Написанный вами код на самом деле используется на марсоходе?
Д. М.: Да. Я работал с группой Man Machine Systems в Лаборатории реактивного движения в Пасадине, штат Калифорния, как один из приглашенных ученых, разрабатывавших алгоритмы машинного восприятия и навигации. Некоторые из этих алгоритмов сейчас применяются в модульных и автономных системах транспортных средств и не только.
Именно в этот период зародился мой интерес к ИИ. Я обнаружил, насколько увлекательна такая вещь, как машинное восприятие. Мы разрабатывали алгоритмы машинного обучения для распределенных и многоагентных систем. Эти алгоритмы должны были понимать окружающую среду и автономно создавать ее модели, даже если никогда не видели этой среды раньше, обучаться по ходу дела.
Многие из моих разработок нашли применение в распределенных сетях и сборе и обобщении данных от различных датчиков. Мы строили системы машинного обучения, используя комбинацию байесовских сетей, придуманных Джудой Перлом, с фильтрами Калмана и другими алгоритмами оценки и прогнозирования. Системы должны были извлекать данные из окружающей среды и широкого спектра источников различного качества, обучаться на них и делать прогнозы. В незнакомых средах они должны были уметь строить карты, собирать информацию о том, что их окружает, и дальше принимать решения, как интеллектуальные системы.
Сейчас я занят в сфере бизнеса, но все равно продолжаю следить за всем, что происходит в области машинного обучения и ИИ.
М. Ф.: Насколько я знаю, свою техническую карьеру вы начали с преподавательской деятельности?
Д. М.: Да, в колледже Баллиол в Оксфорде я преподавал математику и информатику, а также знакомил студентов с робототехникой.
М. Ф.: А как вы перешли к консалтингу по вопросам управления и бизнеса в компании McKinsey?
Д. М.: Это была случайность. Я получил предложение от McKinsey присоединиться к ним в Кремниевой долине и подумал, что это интересный поворот в моей карьере.
В то время, как и многие мои коллеги, например Бобби Рао, я интересовался системами, с которыми можно было участвовать в соревновании беспилотных автомобилей DARPA Grand Challenge. Многие наши алгоритмы допускали применение к автономным транспортным средствам, и эти соревнования были одним из немногих мест, где их можно было использовать. Все мои друзья тогда переезжали в Кремниевую долину. Бобби работал в Беркли вместе со Стюартом Расселом и другими, поэтому я решил принять предложение McKinsey и переехать в Сан-Франциско. Это позволило быть рядом с Кремниевой долиной и с местом, где происходили различные мероприятия.
М. Ф.: Какую роль вы сейчас играете в McKinsey?
Д. М.: Я работаю с новаторскими технологическими компаниями в Кремниевой долине и провожу исследования на стыке технологий, изучая их влияние на бизнес и экономику. Как председатель MGI, я исследую не только технологии, но и макроэкономические и глобальные тенденции. У нас замечательные научные консультанты, среди которых есть и экономисты. Это Эрик Бринолфссон, Хэл Вариан и даже нобелевский лауреат Майк Спенс. Раньше с нами сотрудничал еще один нобелевский лауреат Роберт Солоу.