М. Ф.: Как лаборатория на базе университета сохраняет баланс между исследованиями и коммерческими разработками, которые в итоге превращаются в продукты?
Д. Р.: Мы не берем заказы от компаний, а занимаемся обучением, после которого студенты могут заняться наукой, найти работу в сфере высоких технологий или стать предпринимателями. Мы поддерживаем все варианты. Это наш способ технологического предпринимательства. CSAIL стала колыбелью для сотен компаний, но все они работают автономно.
Продукты мы тоже не создаем, но всегда рады, когда наши исследования приводят к их появлению. Основная миссия лаборатории связана с работой на будущее. Хотя актуальные идеи также принимаются в разработку.
М. Ф.: Какие инновации в области робототехники нас ожидают?
Д. Р.: Робототехника уже поменяла наш мир. Появились дистанционное обучение, медицинская помощь, робота на производстве, мониторинг объектов по датчикам, 3D-печать. Мне нравится представлять мир, в котором вообще не нужно заниматься рутиной. Корзина сама избавляется от мусора, потому что так настроена умная инфраструктура, а о чистоте одежды заботятся роботы. Транспорт становится таким же доступным, как вода или электричество. Виртуальные помощники экономят рабочее время, делая человека здоровее, а результат труда – качественнее.
М. Ф.: А когда я смогу, стоя в центре Манхэттена, вызвать беспилотное такси?
Д. Р.: Начну с того, что в некоторой степени технологии автономного вождения доступны уже сейчас. Современные решения подходят для определенных ситуаций четвертого уровня автономии (согласно определению Сообщества автомобильных инженеров, это предпоследний уровень до полной автономии). На низких скоростях в средах с низкой сложностью и малым количеством взаимодействий уже функционируют автомобили-роботы, доставляющие людей и посылки. Для Манхэттена они не подходят, но могут работать в общинах пенсионеров или бизнес-кампусах.
Установленные в беспилотных автомобилях датчики не очень надежны в плохую погоду. Нужно научить системы ездить в пробках и продумать устройство смешанной среды человек/машина. Для достижения пятого уровня, на мой взгляд, может потребоваться еще десятилетие. Пока коммерческое применение автономных автомобилей возможно только локально.
М. Ф.: То есть мы говорим об услуге, которая будет ограничена проложенными маршрутами или хорошо размеченными районами?
Д. Р.: Не обязательно. Недавно вышла статья с результатами тестирования одной из первых систем, способных ездить по загородным дорогам. Кроме того, 10 лет – это большой срок. Вспомните, как 20 лет назад главный научный сотрудник Xerox PARC Марк Вейзер говорил о повсеместном использовании вычислительной техники, а его считали мечтателем.
В отношении технологий я предпочитаю быть оптимистом. На мой взгляд, они имеют огромный потенциал для объединения людей и расширения их прав и возможностей. Но сначала нужно усовершенствовать науку и технику, а также создать образовательные программы, которые научат людей пользоваться технологическими достижениями. Или подойти к вопросу с другой стороны – продолжить развивать технологическую сторону, чтобы машины сами начали адаптироваться к людям.
М. Ф.: Роботов, которые могут приносить пиво из холодильника, пока не существует.
Д. Р.: К сожалению, да. Мы пока достигли больших успехов в навигации, а не в манипулировании. Это два основных типа функциональных возможностей роботов. Прогресс в области навигации обеспечило появление датчика LIDAR, который представляет собой лазерный сканер. Появилась возможность использовать алгоритмы, которые не работали с сонаром, и это стало переломным моментом. Начали прогрессировать такие вещи, как картография, планирование и локализация, что вызвало большой энтузиазм в сфере автономного вождения.
А вот процесс манипулирования по большей части остался на том же уровне, что и 50 лет назад. Жесткие промышленные манипуляторы с двузубыми клешнями – это не то, что нам нужно. Понемногу мы начинаем задумываться о том, что такое робот. В частности, разрабатываются роботы с мягкими манипуляторами.
Традиционная рука робота с металлическими пальцами способна только к так называемому «жесткому контакту». Палец кладется на объект, который нужно взять, и в эту точку прикладывается сила и момент. При этом нужно знать точную геометрию этого объекта и точно рассчитать, в какую точку его поверхности положить пальцы, чтобы все силы и моменты уравновешивались и могли компенсировать внешние силы и моменты. В технической литературе это называется проблемой силового и геометрического замыкания.
Люди берут предметы по-другому. Попытайтесь поднять чашку ногтями. В случае мягких пальцев знать точную геометрию объекта не обязательно, потому что контакт возникает на большей площади.