На рисунке показана также скорость виртуального астероида относительно Земли
Формулы перехода от системы координат x, y, z к системе ξ, η, ζ имеют вид
где x0
, y0, z0 — координаты центра Земли.Направляющие косинусы осей ξ, η, ζ относительно x, y, z находятся из соотношений
В точке A орбита выбранного нами виртуального астероида пересекает плоскость цели. Будем вести отсчет времени от этого момента пересечения. Пусть выбранный астероид движется по орбите, соответствующей номинальному решению, но значение средней аномалии для него отлично от значения средней аномалии в номинальном решении. Расстояние EA, или координата ξ точки A, равны наименьшему возможному расстоянию орбиты от центра Земли. В момент пересечения плоскости цели координата ζ равна нулю. Но с течением времени координата ζ точки пересечения данного астероида с плоскостью цели не остается постоянной, поскольку начало системы координат движется вместе с Землей. По истечении промежутка времени Δt координата ζ точки, в которой некоторое время тому назад произошло пересечение астероида с плоскостью цели, будет равна
ζ = |V | sin θ Δt, (7.11)
где θ — угол между направлением гелиоцентрической скорости Земли и осью η.
В отличие от координаты ζ координата ξ не меняется с течением времени, поскольку движение происходит в параллельных плоскостях. Если пересечение с плоскостью цели рассматривать на границе сферы действия планеты, то координата ξ равна прицельному расстоянию b (рис. 7.1). Если пересечение рассматривается внутри сферы действия планеты вблизи перигея гиперболы, то ξ равно минимальному расстоянию q от гиперболы до центра Земли.
7.5. Эллипс рассеяния в плоскости цели. Оценка вероятности столкновения
Только один виртуальный астероид пересекает плоскость цели в момент, когда Земля находится у одного конца кратчайшего отрезка между орбитами. Другие виртуальные астероиды, движущиеся вдоль номинальной траектории, пересекают плоскость цели раньше или позже, чем это нужно для достижения минимального расстояния между орбитами, и соответствующие точки пересечения имеют различные значения координаты ζ. Очевидно, что
Таким образом, цепочка виртуальных астероидов, вытянувшихся вдоль номинальной орбиты, проектируется на плоскость цели в прямую, параллельную оси ζ, причем виртуальный астероид, соответствующий центру доверительного эллипсоида в начальную эпоху t0
, пересекает плоскость цели в точке, расположенной, вообще говоря, выше или ниже оси ξ. Область вокруг этой точки на плоскости ξ — ζ является отображением области возможных начальных условий движения на плоскость цели. Поскольку мы с самого начала предположили линейный характер задачи, можно утверждать, что область начальных значений, ограниченная в эпоху t0 доверительным эллипсоидом, отобразится на плоскость ξ — ζ в часть плоскости, ограниченную эллипсом с центром в точке, соответствующей центру доверительного эллипсоида. Задача сводится к тому, чтобы найти координаты центра эллипса на плоскости ξ — ζ и его полуоси и оценить расположение эллипса рассеяния относительно образа Земли на этой плоскости.В линейном приближении эта задача решается достаточно просто. В общем виде ход решения задачи можно описать следующим образом.
Координаты точки ξ, ζ на плоскости цели (см. формулу (7.10)) являются функциями F1
и F2 параметров орбиты (элементов или координат и скоростей в начальную эпоху), что в векторном виде можно записать какL = F(E),
где L — двумерный вектор с компонентами ξ, ζ, а E — вектор параметров орбиты.
В рамках линейного приближения матрица ковариации D вектора L связана с матрицей ковариации вектора E известным соотношением [Эльясберг, 1976]:
D = σ2
(где