Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

Компоненты вектора L и частные производные в момент t (изохронные производные) находятся численным интегрированием уравнений движения в прямоугольных координатах с последующим преобразованием их в координаты ξ, η, ζ и численным интегрированием уравнений, определяющих значения производных (так называемых уравнений в вариациях) при заданных начальных условиях движения. Таким образом, на момент сближения астероида, соответствующего номинальному решению, с Землей (или со сферой ее действия) оказываются известными координаты центра эллипса в плоскости цели и его полуоси, определяемые как

где Dii — диагональные элементы матрицы ковариации D, a1 = aξ — длина малой полуоси эллипса рассеяния, a2 = aζ — длина большой полуоси. Заметим, что формула (7.13) определяет полуоси эллипса, соответствующие области неопределенности начальных условий внутри эллипсоида равных плотностей вероятности. Чтобы получить полуоси доверительного эллипса на плоскости цели, надо aξ и aζ умножить на 3.

Возможны следующие три случая взаимного расположения Земли и эллипса на плоскости цели: а) эллипс расположен на некотором расстоянии от окружности с радиусом, равным радиусу Земли (радиусу захвата Земли, если вычисления доверительного эллипса производятся на границе сферы действия Земли) (рис. 7.3 а), что практически исключает возможность столкновения астероида с Землей;

б) кружок с радиусом, равным радиусу Земли (или радиусу захвата), находится внутри эллипса (рис. 7.3 б). Вероятность столкновения может быть рассчитана исходя из отношения площади кружка к площади, ограниченной эллипсом. Для повышения точности прогноза можно учесть неодинаковую вероятность попадания виртуальных астероидов в различные точки области, ограниченной эллипсом;


Рис. 7.3. Возможные взаимные расположения эллипсов рассеяния и Земли в плоскости цели


в) площадь, ограниченная эллипсом, частично покрывает Землю (рис. 7.3 в). Этот случай практически не отличается от предыдущего. Вероятность столкновения рассчитывается с учетом отношения перекрывающейся области ко всей площади, ограниченной эллипсом.

Более подробно расчет вероятности столкновения здесь не рассматривается, так как во всех случаях, когда возникает реальная угроза столкновения, следует предпринять дополнительные исследования, учитывающие возможный нелинейный характер задачи.

Нелинейный характер задача может иметь по многим причинам. Доверительный эллипсоид уже в эпоху t0 может недостаточно хорошо описывать область возможных начальных условий, поскольку само распределение ошибок наблюдений может не подчиняться закону Гаусса. Чем дальше от эпохи t0, тем больше нарастает нелинейность, и применение формулы (7.8) становится незаконным. Проекция доверительного эллипсоида на плоскость цели в момент t сближения с Землей, отдаленный от t0 на десятилетия, вытягивается в очень узкую область, которая к тому же искривляется в соответствии с кривизной земной орбиты. По всем этим причинам линейный анализ задачи становится неадекватным и требуется применение более тонких методов анализа. К настоящему времени предложено два таких метода: метод Монте-Карло и метод линии вариации.

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос