А что случится, если спутник поднимется выше геостационара? Если немного подтолкнуть спутник вверх, он начнет отставать от поверхности Земли: чем больше расстояние, тем меньше скорость обращения и тем больше орбитальный период. Но будет ли это движение устойчивым, не станет ли Земля наматывать канат в обратную сторону? Это простая механическая задача, которую должен быть способен решить любой физик. Вычисления показывают такое развитие событий: если привязанный спутник окажется на чуть большей высоте, чем геостационарная орбита, и начнет отставать от Земли, она сначала за канатик немного подтянет его вперед, а потом он снова отойдет на исходное расстояние от поверхности. Но после этого спутник уже не отстанет от вращения Земли, потому что наряду с гравитацией добавляется сила, которая тянет его вперед, в сумме они создают более сильное центростремительное ускорение, чем одна только гравитация, и эта более высокая орбита становится геостационарной.
Рис. 3.4. Так будет меняться со временем высота привязанного к Земле спутника на орбите, близкой к геостационарной (rg
).Так что идея космического лифта может быть прекрасно реализована. Осталось только найти материал для каната, чтобы 36-тысячекилометровый трос выдерживал свой вес плюс вес поднимаемого груза (железо для этого не годится, а вот наноуглеродные трубки могут быть перспективными: плотность их меньше, а прочность больше), — и тогда каждому человеку можно будет подняться на геостационарную орбиту за несколько тысяч рублей; по деньгам это все равно что слетать в соседний город на самолете. И это сразу изменит нашу космонавтику.
Рис. 3.5. Одна из многочисленных художественных иллюстраций, демонстрирующих возможную конструкцию космического лифта.
К другим мирам
Итак, чтобы оторваться от поверхности Земли и выйти в околоземное пространство, надо набрать первую космическую скорость. Следующая задача космонавтики — улететь от планеты. Для этого необходимо достичь скорости, которая называется второй космической (обозначается
Как видим, она всего лишь в √2 раз больше первой космической, т. е. у поверхности Земли немногим превышает 11 км/с.
Кинетическая энергия — величина скалярная, она не зависит от того, куда направлен вектор скорости, т. е., полетев в любую сторону с такой начальной скоростью, мы покинем планету по параболической траектории.
Рис. 3.6. Вторая космическая скорость.
Если мы уже на околоземной орбите, а нам надо привести корабль на Марс или на более дальнюю планету, мы его просто «пинаем», т. е. добавляем ему такой импульс, чтобы корабль с круговой орбиты Земли вокруг Солнца вышел на эллиптическую орбиту, в апоцентре которой коснулся бы орбиты планеты назначения. Если мы правильно рассчитали время старта, планета приходит в ту же точку одновременно с нашим аппаратом (рис. 3.7). Но встречаются они с разными скоростями: планета движется быстрее, и если ничего не предпринять, то космический корабль тут же отстанет от нее. Значит, надо еще раз включить двигатели и уравнять скорость. Таким образом, надо придать всего два импульса — и вы оказались у соседней планеты. Такая траектория между планетами называется полуэллипсом Гомана — Цандера (по именам инженеров, рассчитавших эту орбиту).
Рис. 3.7. Полуэллипс Гомана — Цандера. Показаны точки приложения импульсов.
Рис. 3.8. Траектория перелета Штернфельда. Чтобы долететь с земной орбиты до орбиты вокруг дальней планеты, достаточно в нужные моменты сообщить кораблю три правильных импульса.
Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский
Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука