Величину сдвига верхней части элементарного бруска S можно определить, рассчитав, насколько в сумме сократилась длина части бруска, лежащая вправо от элементарного бруска. Эту часть также разобьем на элементарные бруски шириной Δx. После образования разрыва верхняя грань каждого из них в соответствии с законом Гука сжалась на величину Δl = Δx(σпред
- σx)/Е. Запишем dl = (σпред - σx) dx/E. В итоге, после интегрирования получаем сдвиг элементарного бруска:Подставив это выражение в полученное выше равенство, получим уравнение
Его решение, с учетом того, что в точке разрыва нормальные растягивающие напряжения отсутствуют, дает зависимость
В итоге получаем, что после образования трещины напряжения у ее края равны нулю, а при удалении экспоненциально асимптотически увеличиваются, стремясь на бесконечности к величине, равной напряжениям в ненарушенном массиве. В данном случае — к напряжениям, равным прочности бруска на разрыв (см. рис. 19, в), т. е. четкую зону разгрузки выделить нельзя, теоретически трещина разгружает в той или иной степени весь массив. Если так, то в нашей модели вторая трещина, если температура не снижается, должна возникнуть на бесконечном расстоянии от первой. Но при удалении от трещины напряжения растут очень быстро, и на расстоянии, в несколько раз превышающем глубину трещины, разгрузка напряжений почти незаметна. Но продолжим рассматривать идеальную схему.
Примем, что однородный брусок имеет конечные размеры, тогда у его краев будет происходить разгрузка напряжений так же, как будто брусок ограничен трещинами. Края разгружают весь массив, чем дальше от них, тем в меньшей степени. Максимальные напряжения при этом будут наблюдаться в центре бруска, и при снижении его температуры здесь возникнет трещина. При большем снижении температуры эти два бруска, в свою очередь, разорвутся пополам трещинами новой генерации. Еще большее снижение приводит к образованию еще одной генерации и т. д. Глубина проникновения трещин в нашем примере одинакова — трещина проникает до основания бруска. В отличие от предыдущего примера, когда новые генерации появлялись при снижении прочности, в этом ширина всех трещин будет одинаковой. Первоначальные более широкие трещины с появлением соседних будут немного закрываться. В итоге мы получим строго упорядоченный рисунок.
Изменим условия эксперимента. Начнем охлаждать протяженный брусок, имея максимум охлаждения в центре (рис. 20, а). Здесь напряжения в первую очередь достигнут величины, равной прочности, и появится трещина. Ее появление приведет к формированию вокруг двух новых максимумов напряжений (см. рис. 20, б). Последующее охлаждение бруска приведет к заложению в этих точках новых трещин. Соответственно уже рядом с ними появятся новые максимумы напряжений (см. рис. 20, в) и т. д. Если наклон кривой функции напряжений при этом в ходе их наращивания не изменится, то в итоге появится пространственная периодическая структура.
Рассмотрим теперь другое явление — складки. Их простейший (и неприятный) пример — складки на бумаге: намочите кромку листа — и она начнет разбухать, появятся сжимающие напряжения и складки. Это антипод трещин усыхания. Антипод морозобойных трещин — температурные складки. Чтобы их получить, наклейте полоску липкой пластиковой ленты (но не натягивая ее) на линейку и нагрейте ее. А еще лучше склеить лавсановую ленту с тонкой полиэтиленовой (у этого материала очень высокий коэффициент температурного расширения), и после нагрева вы получите мелкие крутые полиэтиленовые складки. А теперь этот пример идеализируем.
Рис. 20
При равномерном нагреве бесконечного однородного бруска, нежестко прикрепленного к плоскости, в нем возникнут сжимающие напряжения. Как только они достигнут некоторой критической величины, состояние бруска станет неустойчивым, и в каком-то случайном месте появится складка. В окружении этой складки произойдет разгрузка сжимающих напряжений. В это же время, также в случайных местах, будут появляться другие складки. Их зонами разгрузки в скором времени перекроется весь брусок. Строго закономерной структуры в этом случае не возникнет. В случае же неравномерного нагрева бруска так, чтобы фронт нагрева (фронт высоких напряжений) смещался вдоль него, складки будут возникать одна за другой на равных расстояниях.