Читаем Азбука рисунков природы полностью

Мы рассматривали разные процессы и использовали разные слова: «растяжение», «сжатие», «потребность», «разрыв», «складка», «станция»... Однако заметим, схема описания последовательности появления структуры при этом не менялась. Во всех рассмотренных примерах описывалась некоторая меняющаяся во времени пространственная функция, характеризующая какой-то потенциал территории — способность совершать или побуждать действие (сжимающие или растягивающие напряжения, социальные потребности, наличие какого-то ресурса) Ex= f(x, T). Одновременно с этим отмечалось, что существует некоторая функция порогового уровня — прочность на разрыв, арендная плата, порог рентабельности Px = f(x, T). Первоначально везде выполнялось условие Рx > Еx и структурные элементы отсутствовали. Но величины потенциальной функции со временем росли, и в какой-то момент в какой-то точке выполнялось условие Ex = Px — потенциал достигает порогового уровня, и тогда здесь возникал структурный элемент — разрыв, трещина, автостанция и т. д. (для математиков такое явление — это разрыв функции, для физиков — фазовый переход, для философов — переход количества в качество). Появление структурного элемента сопровождалось изменением вокруг него потенциальной функции, происходила ее «разгрузка». При этом рядом появлялись ее новые максимумы. Дальнейшее наращивание ее значений вызывало появление новых элементов и т. д.

Воспользуемся этой универсальной схемой и продолжим анализ закономерностей упорядоченного структурообразования в терминах «потенциал», «порог», «элемент», «разгрузка». Из этой схемы следует, что для прогноза структуры достаточно знать пространственно-временную динамику потенциала и порога (знать функции E и P). Значит, особенности структуры заложены в особенностях этих функций.

Потенциальную и пороговую функцию можно объединить в одну в виде f(Ex, Рх) = Ех — Рх. Назовем ее порогово-потенциальной функцией. Эта функция не имеет положительных значений. По мере роста во времени значений потенциальной функции или снижения значений пороговой функции значения суммарной функции возрастают — кривая f(Ex, Рх) приближается к нулю. Первый структурный элемент появится в момент достижения максимумом этой функции нуля.

В пределах рассматриваемого отрезка порогово-потенциальная функция может иметь несколько максимумов (рис. 22, а). В этом случае при наращивании ее значений структурные элементы будут возникать в этих точках (см. рис. 22, б). Соответственно образовавшаяся структура будет отражением неоднородностей среды. Зоны разгрузки элементов этой структуры не перекрывались, и элементы не влияли на образование друг друга. Это не интересно, здесь нет самоорганизации. Поэтому мы будем рассматривать гладкие случаи, когда первоначально на рассматриваемом отрезке порогово-потенциальная функция имеет не больше одного максимума и монотонно убывает от этого максимума. Более сложные функции с макронеоднородностями всегда можно разбить на такие участки. При таком условии положение первого элемента задано, его появление создает два новых максимума, в которых при наращивании потенциала образуются следующие элементы, и т. д. Расстояние от первоначального до следующего элемента определяется в первую очередь закономерностями разгрузки. Величина разгрузки потенциальной функции вблизи элемента в каждом конкретном случае в зависимости от природы наблюдаемой структуры может подчиняться различным закономерностям. Она может зависеть лишь от расстояния до структурного элемента, а может определяться еще и величинами потенциальной функции — составлять какую-то долю от их значений. Закономерность разгрузки при этом может быть описана линейным, степенным, экспоненциальным законами и т. д. (рис. 23). Ширина зоны разгрузки при формировании многих структур может быть фиксированной и четко выраженной (рис. 24). В этом случае положение новых максимумов, и соответственно элементов, четко определено. Если же разгрузка асимптотическая, то положение следующего максимума будет зависеть от первоначального наклона кривой потенциальной функции: чем он больше, тем ближе элементы (рис. 25). Если наклон потенциальной кривой на ненарушенном участке со временем по мере роста ее значений не изменяется (рис. 26) и остаются неизменными закономерности разгрузки, то в итоге элементы первой генерации будут расположены на одинаковом расстоянии друг от друга. Если эти характеристики закономерно изменяются, то появится структура с соответственно закономерно изменяющимся расстоянием между элементами. Если же потенциальная функция не имеет максимума, не имеет наклона, строгий ритм мы не получим.

Рис. 22


Рис. 23


Рис. 24


Рис. 25


Рис. 26


Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии / История / Медицина