Мы рассматривали разные процессы и использовали разные слова: «растяжение», «сжатие», «потребность», «разрыв», «складка», «станция»... Однако заметим, схема описания последовательности появления структуры при этом не менялась. Во всех рассмотренных примерах описывалась некоторая меняющаяся во времени пространственная функция, характеризующая какой-то потенциал территории — способность совершать или побуждать действие (сжимающие или растягивающие напряжения, социальные потребности, наличие какого-то ресурса)
Воспользуемся этой универсальной схемой и продолжим анализ закономерностей упорядоченного структурообразования в терминах «потенциал», «порог», «элемент», «разгрузка». Из этой схемы следует, что для прогноза структуры достаточно знать пространственно-временную динамику потенциала и порога (знать функции E и P). Значит, особенности структуры заложены в особенностях этих функций.
Потенциальную и пороговую функцию можно объединить в одну в виде
В пределах рассматриваемого отрезка порогово-потенциальная функция может иметь несколько максимумов (рис. 22, а). В этом случае при наращивании ее значений структурные элементы будут возникать в этих точках (см. рис. 22, б). Соответственно образовавшаяся структура будет отражением неоднородностей среды. Зоны разгрузки элементов этой структуры не перекрывались, и элементы не влияли на образование друг друга. Это не интересно, здесь нет самоорганизации. Поэтому мы будем рассматривать гладкие случаи, когда первоначально на рассматриваемом отрезке порогово-потенциальная функция имеет не больше одного максимума и монотонно убывает от этого максимума. Более сложные функции с макронеоднородностями всегда можно разбить на такие участки. При таком условии положение первого элемента задано, его появление создает два новых максимума, в которых при наращивании потенциала образуются следующие элементы, и т. д. Расстояние от первоначального до следующего элемента определяется в первую очередь закономерностями разгрузки. Величина разгрузки потенциальной функции вблизи элемента в каждом конкретном случае в зависимости от природы наблюдаемой структуры может подчиняться различным закономерностям. Она может зависеть лишь от расстояния до структурного элемента, а может определяться еще и величинами потенциальной функции — составлять какую-то долю от их значений. Закономерность разгрузки при этом может быть описана линейным, степенным, экспоненциальным законами и т. д. (рис. 23). Ширина зоны разгрузки при формировании многих структур может быть фиксированной и четко выраженной (рис. 24). В этом случае положение новых максимумов, и соответственно элементов, четко определено. Если же разгрузка асимптотическая, то положение следующего максимума будет зависеть от первоначального наклона кривой потенциальной функции: чем он больше, тем ближе элементы (рис. 25). Если наклон потенциальной кривой на ненарушенном участке со временем по мере роста ее значений не изменяется (рис. 26) и остаются неизменными закономерности разгрузки, то в итоге элементы первой генерации будут расположены на одинаковом расстоянии друг от друга. Если эти характеристики закономерно изменяются, то появится структура с соответственно закономерно изменяющимся расстоянием между элементами. Если же потенциальная функция не имеет максимума, не имеет наклона, строгий ритм мы не получим.
Рис. 22
Рис. 23
Рис. 24
Рис. 25
Рис. 26