ОПЕРЕЖАЯ ВРЕМЯ
Весьма вероятно, что первой динамической системой, с которой столкнется человек, только начавший изучение теории хаоса, будет логистическое отображение: f(x) = 4х( 1 — х). Несмотря на кажущуюся простоту, это отображение обладает очень сложной динамикой, которая включает хаотическое поведение. Логистическая функция является решением логистического уравнения, которое впервые описал бельгийский ученый
* * *
СТРАННЫЕ АТТРАКТОРЫ И ФРАКТАЛЫ
Большинство странных аттракторов в хаотических системах представляют собой фрактальные множества. Именно фрактальная геометрия, созданная
* * *
Несмотря на вышесказанное, объективная и не лишенная скепсиса характеристика, приведенная Давидом Рюэлем в книге «Случайность и хаос», полностью корректна:
«Математическая теория дифференцируемых динамических систем выиграла от притока «хаотических» идей и в целом не пострадала от современной тенденции (техническая сложность математики препятствует мошенничеству). Однако физика хаоса, несмотря на частые триумфальные объявления о «новых» прорывах, в настоящее время практически не дает интересных открытий.
Мы не будем излагать искаженное видение хаоса, характерное для некоторых постмодернистов и других мыслителей. Критики утверждают, что высокая популярность теории хаоса и фрактальной геометрии не соответствует их реальной научной ценности. Теория хаоса применяется даже при анализе художественных произведений и в управлении предприятиями.
Нельзя отрицать, что хаос открыл новый путь в науке. Эту новую науку, объединяющую множество дисциплин, математики называют теорией хаоса, или теорией динамических систем, физики — нелинейной динамикой, все остальные — нелинейной наукой. Это наука об эффекте бабочки, о чувствительности к начальным условиям, о случайных, беспорядочных и неправильных траекториях, о непериодическом и нестабильном поведении, о гомоклинических орбитах, о растяжении и складывании траекторий, о странных аттракторах и многом, многом другом. Войдем же в дверь, которую открыла перед нами теория хаоса.
* * *