ХАОС НА ЗЕМЛЕ И НА НЕБЕ
Если Роберт Мэй представил парадигму дискретной хаотической динамической системы в одном измерении (логистическое отображение), то французский астроном Мишель Эно предложил парадигму дискретной хаотической динамической системы в двух измерениях — так называемое отображение Эно. В 1976 году, спустя несколько лет после того, как свет увидела работа Лоренца с описанием модели непрерывной хаотической динамической системы, Эно опубликовал статью «Двухмерное отображение со странным аттрактором», в которой представил преобразование плоскости, определяемое формулой
где а и b — две постоянные, которые обычно принимаются как а = 1,4 и b = 0,3. Это отображение Н представляет собой упрощенную версию сечения Пуанкаре для аттрактора Лоренца.
Если мы применим Н несколько раз подряд к квадрату, то увидим, как он будет менять форму: сначала он будет превращаться во все более вытянутый четырехугольник, затем — в бесконечно запутанную подкову. Эта бесконечно запутанная структура (фрактал), к которой приближаются последовательные итерации Н, и будет странным аттрактором Эно.
Хотя Эно утверждал, что описал странный аттрактор (то есть аттрактор, имеющий фрактальную природу), правильность его выводов подтвердили шведские математики Майкл Бенедикс и Леннарт Карлесон лишь в 1991 году.
Глава 3. Но, господин математик, что такое этот ваш детерминированный хаос?
Но, господин математик, что такое этот ваш детерминированный хаос?
Кто исчислит песок Иакова и число четвертой части Израиля?
Мефистофель: Как предречь игру судьбины?
Бог и Дьявол сошлись в одном: способность человека предсказывать будущее безнадежно ограничена. Теория относительности Эйнштейна избавила ученых от иллюзий об относительном пространстве и времени, описанных в классической физике Ньютона, квантовая теория Бора, Планка и Гейзенберга, в свою очередь, покончила с мечтами о точных измерениях, а теория хаоса в одночасье уничтожила фантазии о возможностях предсказания будущего.
Самым важным ударом по традиционной мысли стало понимание того, что предсказать поведение многих систем на больших интервалах времени в принципе невозможно, так как решения уравнений, описывающих движение этих систем, крайне неустойчивы. Сложное поведение подобных систем вызвано не внешним воздействием, не обилием степеней свободы и не квантовыми эффектами. Уравнения, описывающие движение системы, детерминированы, однако их решения обладают стохастическими свойствами. Это явление называется детерминированным хаосом.
Попытаемся объяснить детерминированный хаос с точки зрения математики, ведь, как говорил Чарльз Дарвин, «математика наделяет человека новым, шестым чувством».