Настало время ответить на вопрос, вынесенный в название главы: что же такое детерминированный хаос? Сначала посмотрим, что мы узнали о работах Пуанкаре, Смэйла и Лоренца из предыдущих глав. Мы увидели, что геометрическая сущность хаоса заключается в растяжении и последующем складывании траекторий.
В результате последовательных растяжений и складываний траектории на фазовом пространстве становятся подобны тарелке спагетти, в которой каждая траектория переплетена с остальными. Следовательно, малейшая неточность при измерении начальных условий может привести к тому, что мы проследуем вдоль неверной траектории-спагетти, которая переплетена с той, что нас интересует, но ведет к совершенно другой части блюда. В результате наш прогноз в долгосрочном периоде будет ошибочным. Эффект бабочки в действии.
История появления теории хаоса показывает нам две структурные характеристики, связанные с хаосом и объясняющие его непредсказуемость. Во-первых, хаотические системы крайне чувствительны к начальным условиям (это показали Пуанкаре и Лоренц), во-вторых, траектории в хаотических системах, растягиваясь и складываясь пополам, переплетаются между собой (Пуанкаре, Смэйл). Мы продемонстрировали обе эти характеристики на примере задачи трех тел Пуанкаре, бильярда Адамара, подковы Смэйла, системы Лоренца и других.
Математическое определение хаоса, с одной стороны, отражает чувствительность к начальным условиям, или эффект бабочки, а с другой стороны — запутанную топологическую структуру, или эффект карточной колоды (он заключается в том, что траектории переплетаются между собой так, будто воображаемый пекарь месит воображаемое тесто).
ХАОС = ЭФФЕКТ БАБОЧКИ + ЭФФЕКТ КАРТОЧНОЙ КОЛОДЫ
Хаос представляет собой совокупность эффекта бабочки и эффекта карточной колоды. Недостаточно, чтобы близлежащие траектории со временем быстро отдалялись друг от друга — они также должны растягиваться, складываться и при этом переплетаться.
Существует множество классических примеров хаотических систем, большинство из которых мы уже упоминали. Если говорить о непрерывных динамических системах, то наиболее ярким примером системы, не сохраняющей энергию (диссипативной системы), будет система Лоренца — упрощенная модель земной атмосферы.
Система Эно — Хайлса, связанная с задачей трех тел, — это классическая модель хаотической системы без диссипации (такие системы называются гамильтоновыми).
Если говорить о дискретных динамических системах, то вам уже знакомы логистическое отображение Мэя (о нем мы подробнее поговорим далее) и двухмерное отображение Эно — две системы, по форме схожие с подковой Смэйла и, что более важно, обладающие символической динамикой. Примером символической динамики является сдвиг Бернулли — возможно, простейшая разновидность дискретной динамической хаотической системы.
Сдвиг Бернулли определяется следующим образом: для данного числа х на интервале от 0 до 1, записанного в виде десятичной дроби, нужно сдвинуть запятую на одно положение вправо и отбросить первую цифру (то есть целую часть полученного числа). Пример:
В (0,324571) = 0,24571.
Мы сдвинули запятую на одну позицию вправо и стерли цифру 3. Аналогично,
В(0,24571) = 0,4571
В(0,4571) = 0,571
В(0,571) = 0,71
В(0,71) = 0,1
В(0,1) = 0
В(0) = 0
В(0) = 0
…
Следовательно, орбита или траектория начального значения х = 0,324571 будет записываться так: {0,324571; 0,24571; 0,4571; 0,571; 0,71; 0,1; 0; 0; 0}. Эта орбита стремится к фиксированной точке 0 (точечному аттрактору, или фокусу).
Как вы узнаете позже, сдвиг Бернулли обладает хаотическим поведением, поскольку в нем присутствуют и эффект бабочки, и эффект карточной колоды. Чувствительность к начальным условиям несложно подтвердить экспериментально: допустим, что мы хотим проследовать вдоль траектории точки х = 1/3 = 0,3 = 0,33333. Так как результатом измерения может быть лишь конечное число десятичных знаков, рассмотрим у = 0,3333. Ошибка будет составлять менее одной тысячной. Изначально орбиты х и у будут располагаться поблизости, однако затем отдалятся друг от друга: