Чандрасекар вывел общую формулу предельной массы идеального белого карлика, которая сейчас носит его имя. Правда, в явном виде в его первой статье она не приведена — возможно, в силу краткости текста. Подставив численные значения фигурирующих в ней физических величин, Чандрасекар заключил, что масса белого карлика не может превышать 0,91 массы Солнца.
Модель Чандрасекара (которая впоследствии не раз уточнялась) была в теоретическом контексте своего времени совершенно правильной, однако определенное им значение предельной массы оказалось чересчур низким. Случилось это из-за того, что он пользовался завышенной величиной средней массы звездного вещества, приходящейся на один электрон. Сейчас принято считать, что этот предел составляет приблизительно 1,4 массы Солнца, однако его точная величина зависит от состава белого карлика.
Причину физического явления, описанного Андерсоном, Стоунером и Чандрасекаром, нетрудно объяснить и без формул. Гравитационная энергия звездного ядра в ньютоновском приближении обратно пропорциональна его радиусу, а в ультрарелятивистском пределе такая же зависимость существует и для внутренней энергии. В то же время гравитационный потенциал пропорционален квадрату массы ядра, а внутренняя энергия — самой массе. Поэтому при увеличении массы сила тяготения превалирует, что ведет к гравитационному коллапсу. Поскольку оба вида энергии одинаково зависят от радиуса, этот коллапс не может быть остановлен давлением звездного вещества. Отсюда следует, что он будет продолжаться, пока материя ядра не перейдет в форму с иным уравнением состояния или пока не возникнет гравитационная сингулярность. Конечно, это объяснение представляется очевидным лишь в контексте современного знания, но не с позиций физики и астрофизики 1930-х гг.
Стоит еще раз отметить, что нуклоны (нейтроны и протоны) белых карликов находятся в нерелятивистских состояниях, однако именно они обеспечивают практически всю плотность энергии вещества этих звезд. В то же время электроны (не важно, нерелятивистские или релятивистские) дают почти стопроцентный вклад в его давление. К тому же, если электроны находятся в нерелятивистском состоянии (режим Фаулера!), масса белого карлика оказывается возрастающей функцией плотности вещества в его центре, а радиус, напротив, — убывающей; радиус также убывает и с увеличением полной массы карлика (он обратно пропорционален корню третьей степени из массы). Такая зависимость радиуса от массы является общим свойством звезд, у которых давление вещества обеспечивается вырожденной нерелятивистской материей (в данном случае электронным ферми-газом). Другими словами, увеличение гравитационного притяжения, сопутствующее возрастанию массы, вызывает прогрессирующую компактификацию звезды.
Политропный показатель приближается к 4/3 лишь при условии, что все электроны стали ультрарелятивистскими, поэтому к пределу Чандрасекара можно приблизиться лишь асимптотически. В этом пределе радиус звезды уменьшается до нуля, а плотность становится бесконечной (то есть наступает гравитационный коллапс). Это частный случай общего (математически доказанного) правила, согласно которому звезды с политропным уравнением состояния при показателе степени, меньшем 4/3, никогда не бывают динамически устойчивыми.
Первые теоретические модели белых карликов строились в рамках ньютоновской теории тяготения, которая позволяет наглядно понять механизм появления предельной массы. Рассмотрим семейство уравнений состояния звездного вещества с разными степенями зависимости давления от плотности. Расположим в левом конце ряда модели, где давление незначительно растет с увеличением плотности, а в правом — модели с очень быстрым ростом. Очевидно, что в первом случае неизбежно появление пределов чандрасекаровского типа, поскольку тяготение звездного вещества при увеличении массы звезды рано или поздно справится с противостоящим ему давлением, и звезда начнет необратимо сжиматься. В правом конце ряда получаем другую картину — давление растет быстрее силы тяготения, так что звезда способна сопротивляться гравитационному сжатию при любой массе. Именно такой результат и дают политропные модели: при показателе степени 4/3 массовый предел существует, а при показателе 5/3 он отсутствует.
Переход к ОТО полностью изменяет эту картину. Согласно ОТО, давление искривляет метрику пространства-времени и тем самым увеличивает силу гравитации. Поэтому звезды из правой части ряда обязаны схлопнуться в гравитационный коллапс. Если в ньютоновской системе давление всегда противостоит сжатию звезды, то, по Эйнштейну, для достаточно больших масс давление делает сжатие неизбежным. Поэтому компактная звезда, чье тяготение подчиняется ОТО, всегда имеет верхний предел массы, достигаемый при конечной плотности вещества в ее центре. Конкретное значение предела определяется уравнением состояния, однако само его существование от этого уравнения не зависит.
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное