Коль скоро мы дошли до ОТО, стоит задуматься, в какой мере ее необходимо учитывать при обсчете моделей белых карликов. Короткий ответ: в весьма умеренной. Существует простой критерий, который позволяет определить, насколько существенна ОТО для понимания свойств космического объекта массы
Этот подсчет элементарен — алгебра для седьмого класса. И что получаем? Для Солнца формула дает приблизительно одну миллионную — почти чистый нуль. Поэтому для моделирования свойств нашего дневного светила вполне достаточно ньютоновского закона всемирного тяготения. Эффекты ОТО можно обнаружить в пространстве неподалеку от Солнца — это небольшая поправка к вычисленному на основе ньютоновской небесной механики вековому вращению орбиты Меркурия и отклонению звездных лучей в солнечном поле тяготения. Однако эти эффекты чрезвычайно малы, и, чтобы их заметить, требуются весьма точные наблюдения. Для типичного белого карлика формула дает одну десятитысячную — больше, но все равно немного. Поэтому учет ОТО вносит в моделирование свойств белых карликов весьма скромные поправки. А вот для нейтронных звезд
Физический смысл этого критерия вполне прозрачен. Рассмотрим пробную частицу с массой
Современные модели белых карликов тоже описывают их вещество как газ (точнее, кулоновскую плазму) из ионов и вырожденных электронов, однако принимают в расчет силовое взаимодействие между частицами (следовательно, газы уже не считаются строго идеальными). Кроме того, эти модели учитывают различия в элементном составе кулоновской плазмы, которая, напомню, может содержать гелий, углерод, кислород и даже магний и неон. Главное их отличие от модели Чандрасекара состоит в том, что у реальных белых карликов предельная масса достигается при конечной плотности. Максимальные массы тех или иных белых карликов, вычисленные на основе этих моделей, тоже (по традиции и из уважения) называется пределом Чандрасекара.
Конечно, есть и другие отличия. Чандрасекар выполнил свою великую работу до того, как Джеймс Чедвик в 1932 г. открыл нейтрон, а Вернер Гейзенберг и Дмитрий Иваненко создали протонно-нейтронную модель атомного ядра. Протоны (свободные или в составе атомных ядер) могут вступать в реакции с электронами и порождать нейтроны и нейтрино — это так называемый обратный бета-распад. Поскольку нейтроны массивней протонов, то процесс возможен только с участием электронов, чья полная энергия примерно в два с половиной раза превышает их энергию покоя
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное