Читаем Бесчисленное поддается подсчету. Кантор. Бесконечность в математике полностью

У покрытий ординалов второго класса более сложная структура, чем у N. Чтобы определить покрытие N, достаточно просто сказать, что оно «начинается с 01 и продолжается, повторяя эти цифры». Эта фраза полностью описывает покрытие 010101..., поскольку, пользуясь этим единственным правилом, мы знаем, какой цифрой — 0 или 1 — покрывать каждое натуральное число.

Но этого определения недостаточно для полного описания покрытия ординальных чисел второго класса, так как они устроены сложнее, чем натуральные числа. Ординалы второго класса начинаются с , + 1, + 2, ..., после бесконечного числа этапов переходят + , + + 1, + + 2,..., после бесконечных переходов — к + + ... и после бесконечного числа бесконечных переходов — + + + ... (, взятому бесконечное число раз), + + + ... (, взятое бесконечное число раз) + 1... и так далее.

Таким образом, если мы говорим, что покрытие ординалов второго класса «начинается с 01 и состоит из повторения этих цифр», это подскажет нам, какова будет только первая часть последовательности , + 1, + 2,... Перейдя + , мы должны указать способ начать покрытие заново. Оно может быть снова 01 или каким-то другим. И опять, когда мы дойдем до + + , мы должны будем начать все сначала; потом все сначала, дойдя до + + + , и так далее.

Если мы решим начинать каждый раз с 01, то у нас получится «базовое» покрытие N 010101..., которое будет повторяться несчетное количество раз.

ОБОБЩЕННАЯ КОНТИНУУМ-ГИПОТЕЗА

Континуум-гипотеза гласит, что 2X0 = X1. Кантор не смог ни доказать, ни опровергнуть это утверждение. Обобщенная континуум-гипотеза была сформулирована Кантором в его «Обоснованиях» и расширяет предыдущую. По ней, не только 2X0 = X1 но и 2X1 = X2, 2X2 = X3, 2X3 = X4 и так далее. При жизни ученый так и не узнал, верные эти гипотезы или ложные.

ПАРАДОКС КАНТОРА

Членами множества 'P(N) являются все множества, которые можно образовать с помощью членов N. Эту идею, разумеется, можно обобщить. Если А — произвольное множество, то множество, члены которого — все множества, которые можно создать посредством элементов А, будет называться 'P(A) (читается «части А»), Как 'P(N) имеет мощность 2X0 , так же можно доказать, что 'P(N) имеет мощность, равную «2 в степени мощности A». Если бы континуум-гипотеза была верной, то мощность 'P(R) равнялась бы 2X1 .

Мы знаем, что N счетное, a 'P(N) — нет; другими словами, мощность больше, чем . Это тоже можно обобщить. Согласно теореме Кантора, мощность 'P(А) всегда будет больше А. Одним из следствий теоремы Кантора является то, что для любого множества всегда будет существовать большая мощность, но только в тех случаях, когда речь идет о множествах, образованных ординальными числами. Теорема Кантора позволяет распространить это утверждение на все множества, вне зависимости от того, какова природа их членов. Возьмем универсальное множество, то есть содержащее в себе все, абсолютно все возможное. По теореме Кантора, существует множество с большей мощностью. Но может ли быть мощность, превышающая мощность множества, в котором содержится вся Вселенная? Такого большого множества не может существовать, однако теорема Кантора утверждает обратное.

Перейти на страницу:

Похожие книги