Чтобы решить эту проблему, Кантор ввел третий принцип порождения — третье правило, по которому второй принцип не может применяться к полной последовательности всех ординальных чисел. Другими словами, Кантор заявил, что О не существует.
Хотя это правило действительно решает парадокс, оно не кажется удовлетворительным. Мы как бы даем пациенту обезболивающее, но не находим причину его болезни. Для того чтобы обнаружить эффективное решение, нужно узнать, какой недуг вызвал боль, то есть какая ошибка лежит в основе теории, приведшей к парадоксу.
По мнению Кантора, его глубинной причиной была необходимость сделать различие, которое он ввел в статье 1883 года, между трансфинитным и абсолютно бесконечным. Ученый писал, что к области трансфинитного относятся все бесконечные множества, которые может познать человеческий разум и которыми он может оперировать, как, например, множество вещественных чисел или ординальных чисел первого, второго или третьего классов или еще какой-либо определенный класс. В области абсолютного мы сталкиваемся с множествами, которые «слишком велики» для нашего ума; среди них находится множество, образованное всеми ординальными числами, и универсальное множество (которое включает в себя абсолютно все и о котором речь шла в предыдущей главе). По этому поводу в статье 1883 года Кантор писал так:
Абсолютное, считает Кантор, подчиняется другим правилам, нежели трансфинитное, — правилам, которые мы даже не можем сформулировать, потому что не можем их познать. Следовательно, парадокс рождается, в сущности, из-за ошибочной попытки применить к абсолюту правила трансфинитного. Третий принцип порождения ординальных чисел, состоящий в том, что определенное правило трансфинитного не применимо к определенному абсолютному множеству, таким образом, создан не специально для конкретного случая, а является следствием философии, на которой основывается теория множеств. Аналогично решение парадокса Кантора (см. предыдущую главу) заключается, по мнению самого ученого, в том, чтобы просто-напросто заявить, что к универсальному множеству, относящемуся к области абсолюта, нельзя применить теорему, которая утверждает, что за каждым множеством идет еще одно с большей мощностью (см. рисунок). Надо сказать, что в действительности в работе 1883 года замечания об абсолютном, подобные приведенному выше, чаще встречаются в примечаниях, внесенных в основной текст позже, и наличие в теории множеств противоречий было на тот момент только что открыто. Сдержанность Кантора, возможно, должна была предотвратить нападки на его теорию и была результатом трезвого расчета. Об этом свидетельствует письмо, которое Кантор написал Гильберту 15 ноября 1899 года. В нем, говоря о своей философии и о различии между трансфинитным и абсолютным, он упоминает следующее: «Философия, которую вы можете найти в «Основах», изданных в 1883 году, особенно на последних страницах, выражена довольно ясно, но частично непонятно, и это сделано намеренно».
Дедекинд, который тоже работал в то время с понятиями теории множеств, казалось, не замечал никаких парадоксов, и сам Кантор после депрессии, поразившей его в 1884 году, полностью оставил эту тему на продолжительное время. Вопрос парадоксов теории множеств канул в Лету и был «открыт вновь» в 1897 году.