Быть успешной компанией, уметь рассчитывать показатели, планировать и ставить задачи стало невозможным без взаимодействия с данными, – с учетом того, что в скором времени большая части таких сервисов станет «коммодити»[30]
. Чтобы достичь этого, с одной стороны, организации необходимо выровнять единое понимание, что такое данные и какую ценность они создают для конкретной компании. С другой стороны, работа с данными требует скрупулезности и аккуратности. При развитии навыков и компетенций работы с данными, например при машинном обучении, происходит обособление от такой науки как статистика. Возникают постоянные барьеры коммуникаций, сводящие к минимуму возможность успешной кооперации.Такие барьеры приводят к одной из важнейших проблем в управлении данными – департаменты внутри корпораций работают в формате «Silos»[31]
– с изолированными хранилищами данных, которые возникают естественным образом в крупных организациях. По сути, речь идет о «подстольном» BI-хранилище, которое стоит практически у каждого отдельного департамента, и, как показала моя практика, это явление весьма частое. Такие Silos делают невозможным достижение и создание «Единого хранилища данных».Silos возникают, когда департаменты конкурируют друг с другом. Важно понимать, что основу такой конкуренции создает внутренняя культура организации, поэтому стимулирование внутренней конкуренции вредит стратегии данных. Можно даже утверждать, что вероятность совместить такие организации, где поддерживается и стимулируется конкуренция со стратегией данных, крайне низкая.
Silos как явление существуют не только внутри организации. Если рассмотреть несколько отраслей, например, производство и банкинг, то здесь данные изолированы и хранятся только внутри производственного контура. Банк с наименьшей вероятностью сможет получить доступ к данным производства, хотя как раз получение данных дает возможность разработки и создания «цифрового двойника» производства и моделирования новых финансовых продуктов с использованием данных, таких как гарантии или производственный овердрафт, без необходимости сбора бумаг или отчетности. Именно поэтому фактор культуры и устранения барьеров коммуникации является одним из ключевым при построении дата-центрированной бизнес-модели.
Ряд экспертов[32]
предлагает несколько решений по гармонизации и трансформации культуры организации:• Открытость
– сотрудников стимулируют делиться данными, высказывать идеи и поощряют за помощь в исследованиях данных других департаментов и за их использование.• Top-down
менеджмент напрямую координирует и на своем примере показывает важность совместной работы с данными.• Холократичность
– сведение всех ключевых заинтересованных лиц в круг влияния по примеру компании Zappos; формирование «плоских» или одноранговых команд для работы над аналитическими сервисами с использованием данных.• Стройте сервисы
– переход на сервисную модель работы с данными, позволяющий стандартизировать и выравнивать понимание того, как должен выглядеть тот или иной сервис.• Фокусируйтесь на драйверах
[33][34] – определение драйверов, которые приводят к появлению Data Silos, такие как:◊ Множество и различие платформенных решений и компетенций
– когда внутри одной организации существуют одновременно много различных платформ по работе с данными.◊ Политические
– борьба за сферы влияния приводит к тому, что информация используется как основной инструмент для разделения влияния.◊ Неравномерный рост
– быстрый рост компании или неорганические приобретения различных бизнес групп приводят к тому, что возникают отличные интерпретации того, как использовать данные.◊ Сфокусированность на вендоре
– каждый из вендоров имеет внутри своего решения уникальную модель данных. Многие из них строят изолированные экосистемные решения, которые не умеют находить общий язык с решениями других вендоров. Сегодня стандартизированы только интерфейсы без интерпретации.По версии Digital Impact[35]
предлагается, наоборот, рассмотреть ряд нестандартных приемов по трансформации культуры организации:• Предложить сотрудникам делать скетчи с историями
про данные. Сотрудники изучают данные и пробуют рассказать историю, для этого организуются регулярные питчи внутри компании в специально отведенное время (так называемые DemoDay).• Построить скульптуру данных
, которая будет представлять те или иные данные. Необходимо подумать и сконструировать решение, которое в том числе будет привлекать внимание других сотрудников и поможет впоследствии рассказать историю #datasculpture.