• Начать формулировать аргументы
с использованием данных во время дискуссии или обсуждения.Кто владелец стратегии данных?
Анализируя структуру навыков и требований к современному Data Scientist
[36][37] (которая, кстати, уже тоже устарела, так как на смену работе с Hadoop пришел Spark для работы с NoSQL БД), можно выделить ряд ключевых ожиданий.Помимо навыков из области математики или статистики, специалист в обязательном порядке должен обладать навыками, позволяющими ему уметь настраивать среду, загружать и обрабатывать данные и подготавливать датасет к исследованиям.
Кроме специалиста по исследованиям необходимы специалисты по контролю и качеству данных, бизнес-аналитики, архитекторы данных, разработчики информационных потоков и сервисов и так далее.
При всем обещающем многообразии компетенций и навыков встает открытый вопрос: к кому из бизнес-лидеров должна относится стратегия данных. Один из традиционных взглядов, преобладающий в большинстве компаний, выглядит следующим образом:
• Финансовый директор
отвечает за стратегию данных и имеет специальное подразделение, которое выступает заказчиком и контролирует качество данных для всех остальных подразделений.• IT-директор
отвечает за реализацию, наполнение и сбор данных в соответствии с выставленными требованиями (SLA, OLA и так далее).В такой конфигурации возникает несколько коллизий при работе с данными:
• Финансовое подразделение
оперирует размерностями данных, которые в первую очередь будут покрывать потребности подразделения, входящие в зону его ответственности перед внешними инвесторами (МСФО отчетность, Investor Relations и другие). В этом смысле многомерная и сложная бизнес-сущность организации представляется в виде плоского отчета, во много отвечающего ограниченному количеству аналитических задач.• IT-подразделение
не берет на себя ответственность за качество данных в источниках. Помимо этого, гармонизация источников данных также требует приложение сверхусилий[38].Решать такие коллизии призвана модель офиса CDO (Chief data officer) в прямом подчинении CEO, в котором появляются ряд новых профессий и ролей – например, data engineer
[39][40] или data architect. Они вместе с CDO проектируют и внедряют ряд ключевых артефактов, на которых будет строиться стратегия управления данными. Это могут быть:• Единая бизнес модель и единая модель данных.
• Аппетит к риску на основании.
• Data Quality и так далее.
В своей основе data engineers имеют ряд отличительных особенностей от data scientists, если поставить их в один ряд, то можно сказать, что data engineers больше занимаются самими данными, нежели поиском инсайтов из них. Их задача – следить, проектировать и организовывать бесконечные потоки данных, структурируя и валидируя их для конечного пользователя.
Self-service BI
Отдельно стоит рассмотреть экосистему Microsoft, организованную для двухсот тысяч сотрудников корпорации, и предоставляющую все необходимое для работы с данными. Вызовы, на которые отвечает эта экосистема, сопоставимы с задачами по трансформации культуры, стоящими перед крупнейшими корпорациями.
Команда Microsoft выделила пять видов особенностей в реализации стратегии данных:
• Заменить стратегии оценки эффективности внедрения BI средств на стратегии возможности взамен того, чтобы пытаться оценить ROI от проектов, связанных с данными, организация должна перейти к пути оценки возможностей применения данных.
• Перейти от управления изменения (Change Management) к модели потребления данных. Сервисы на данных – это продукт, у которого есть свой потребитель. Технологическая организация должна полностью сфокусироваться на потреблении технологических продуктов.
• Сфокусироваться вокруг кривой использования BI-инструментов и ранних последователях (Early Adopters), так как они являются самыми важными бизнес-пользователями, которые будут потреблять тот или иной сервис.
• Структурировать инструменты поддержки для каждой группы пользователей с точки зрения канала коммуникации, поддержки продукта, общего видения развития сервиса и так далее.
• Сформировать экосистему поддержки инноваций и работы с данными с вовлечением социальных сетей, каналов коммуникаций, партнеров и поставщиков данных, создавая возможность быстрого масштабирования.