Из-за огромного объема связанных с этим работ часто ограничиваются созданием узкоспециализированного банка данных, ориентированного на решение определенного класса частных задач; в последнее время, однако, предприняты успешные попытки создания более универсальных банков данных. Это очень сложно организованные службы (обычно международные), занятые обработкой существующей и сбором постоянно поступающей новой информации о биологической активности химических соединений.
Но, допустим, все эти, в сущности, технические трудности позади. Решены все языковые проблемы, создан банк данных, можно приступать наконец к анализу связи «структура — активность».
Наиболее универсальные подходы к решению задач подобного рода базируются на теории распознавания образов.
Предположим, идете вы по осеннему лесу, помахивая корзиной, в которой лежат две-три сыроежки, и жадно шарите взором по траве. Стоп — шляпка! Наклонившись, срезали. Осмотрели — типичная свинушка. Как вам удалось это установить? Все очень просто, ответит специалист по теории распознавания образов. Каждый гриб можно описать с помощью некоторого набора признаков: пластинчатый или губчатый, цвет шляпки, форма шляпки и ножки, глянцевитая или матовая поверхность, цвет «мяса» и т. п. Обучаясь различению грибов, вы рассматривали представителей различных их видов, причем знающий человек («учитель») вам говорил: вот это, мол, подберезовик, то — волнушка, а вон то — опенок. Иногда он специально указывал на какой-то отличительный признак скажем, характерным образом подогнутые края шляпки, иногда вы просто полагались на зрительную память. Таким образом, вы вырабатывали для себя
Не всегда вы сможете это правило сформулировать вполне четко. Есть признаки, совершенно однозначно определяющие вид (скажем, белые бородавки на ярко-красной шляпке), присущие многим видам (выпуклая форма шляпки) или практически бесполезные при определении вида (размер). Некоторые комбинации признаков, характерных для данного вида, мы часто воспринимаем «на глаз», и если нас спросят, почему мы решили, что это именно опенок, а не шампионьон или (чур, чур!) бледная поганка, объяснить будет трудно, хотя, положив рядом опенок и шампиньон, мы в конце концов сможем указать вполне конкретные различия в отдельных признаках или их комбинациях. Это — так называемая
Если описание объекта можно легко формализовать — например, в качестве признаков используются числа, наличие или отсутствие какого-либо элемента и т. п. — почему бы не поручить задачу распознавания вычислительной машине?
Пусть, для простоты, признаков только два, и оба — числа. Например, имеются результаты обследования ребятишек в детском саду; выяснилось, до скольких ребенок умеет считать (признак а) и измерялся его рост (признак в). Представим графически данные, относящиеся к двум группам, старшей и младшей, откладывая по оси абсцисс признак а, а по оси ординат — признак в, так что каждому объекту (ребенку) будет соответствовать точка. Окончив эту работу, мы убедимся, что точки располагаются на графике двумя «роями» — один поближе к началу координат, другой — подальше от него; если же при построении мы наносили разными цветами точки, соответствующие объектам младшей (зеленые) и старшей (красные) групп, мы обнаружим, что совершенно очевидно первый рой образован почти исключительно зелеными точками, второй — красными.
Вычислим средние значения признаков а и в для двух групп и пометим соответствующие точки на графике (центры групп). Можно предложить следующее решающее правило: данный объект принадлежит той группе, ближе к центру которой расположена соответствующая ему точка. Это — пример так называемой геометрической интерпретации задачи распознавания образов. Если теперь нам предстоит определить на основании параметров а и в, к младшей или старшей группе принадлежит данный курносый объект, нам достаточно нанести на график соответствующую точку, измерить расстояния до центров первой и второй групп и сравнить их между собой. ЭВМ, разумеется, такую процедуру выполняет безо всяких графиков, расчетным путем. Обучение в данном случае заключалось в вычислении средних для двух групп.