Внимательно исследовав еще раз график, мы обнаружим, что принятое нами решающее правило срабатывает не всегда: пара зеленых точек расположена ближе к «красному» центру, чем к своему, «зеленому», и наоборот. Действительно, может иногда встретиться в младшей группе вундеркинд, считающий, скажем, до тысячи, а если он к тому же и ростом заметно обогнал сверстников — наша процедура неминуемо совершит ошибку и отнесет его к старшей группе. Причем такие случаи вовсе не являются следствием несовершенства решающего правила: полностью безошибочная классификация на основании только значений параметров а и в здесь невозможна в принципе, а полученное указание на принадлежность объекта именно этой группе следует трактовать таким образом, что он с большей вероятностью относится к ней, чем к другой. (Вспоминается консилиум у постели Буратино: «Пациент скорее жив, чем мертв».)
Существует много способов вычисления этой вероятности; ясно, что такого рода оценку можно сделать уже на основании величин расстояний от рассматриваемой точки до двух центров. На нашем графике нетрудно провести прямую, точки которой в равной степени удалены от каждого из них, и если точка, соответствующая некоторому объекту, расположится именно на ней, мы с помощью нашего решающего правила вообще ничего не сможем сказать о принадлежности объекта той или иной группе.
Очень, конечно же, большое значение имеет выбор параметров, на основании которых происходит распознавание. В рассмотренном примере этот выбор был удачным в том отношении, что параметры а и в независимы (рост и умственное развитие ребенка в данном возрасте необязательно взаимосвязаны). Кроме того, что еще важнее, оба параметра являются существенными, то есть действительно в среднем различны в двух группах, или, как еще говорят, несут информацию о принадлежности объекта одной из групп.
Что же случается, если избранные параметры не удовлетворяют этим требованиям? Проиллюстрируем это на примерах. Пусть мы вначале решаем нашу задачу, используя всего один параметр — рост. Соответствующие различным объектам точки и центры групп располагаются в этом случае на прямой. Мы убедимся, что качество классификации ухудшится. В самом деле, если какой-то мальчуган из старшей группы ростом не вышел, он будет отнесен неправильно (на прямой соответствующая точка расположится, не доходя середины отрезка между двумя центрами); при классификации же на основании двух параметров расстояние до «неправильного» центра окажется уже большим в силу сдвига соответствующей точки по второй оси, параметру а, поскольку по умственному развитию наш объект находится вполне на уровне своего возраста.
Что произойдет, если в качестве второго параметра мы возьмем не независимое от роста умение считать, а величину, связанную с ростом, — например, вес? Точки на нашем графике расположатся узкой восходящей полоской, причем у верхнего ее конца сосредоточатся красные, у нижнего — зеленые. Качество классификации почти не улучшится: второй параметр несет мало дополнительной информации, чаще всего у ребят большего роста окажется и больший вес.
Выбор для описания объекта взаимозависимых (коррелированных) параметров, однако, ошибка не самая страшная; это лишь затрудняет вычисления, но не оказывает отрицательного влияния на результат. В отличие от этого введение несущественных параметров, значения которых не зависят от того, какой группе принадлежит объект, очень сильно сказывается на качестве распознавания, часто делая процедуру вообще неработоспособной.