Кривая, изображенная на графике А, называется логарифмической или экспоненциальной кривой. Такую кривую можно преобразовать в прямую, построив график изменения логарифма числа клеток во времени. Тогда в идеальных условиях рост бактерий теоретически должен быть экспоненциальным. Сравним эту математическую модель с кривой роста реальной популяции бактерий, которая изображена на рис. 2.7. Можно отметить четыре фазы роста. Во время лаг-фазы бактерии адаптируются к новой среде обитания, и поэтому максимальная скорость роста не достигается. В этот период у бактерий могут, например, синтезироваться новые ферменты, необходимые для усвоения тех питательных веществ, которые содержатся в новой среде.
Рис. 2.7. Типичная кривая роста популяции бактерий
Логарифмическая фаза — это такая фаза, когда бактерии растут с максимальной скоростью, число клеток увеличивается почти экспоненциально, а кривая роста идет прямолинейно. Затем рост колонии начинает замедляться, и культура входит в стационарную фазу, когда скорость роста равна нулю и когда резко возрастает конкуренция за пищевые ресурсы. Образование новых клеток замедляется, а затем совсем прекращается. Увеличение числа клеток компенсируется одновременной гибелью других клеток, поэтому суммарная численность живых клеток остается постоянной. Переход к этой фазе обусловлен действием многих факторов: истощением среды, накоплением токсичных "шлаков", образующихся в процессе обмена веществ, а в случае аэробных бактерий еще и уменьшением содержания кислорода в среде.
Во время последней фазы — фазы замедления роста — ускоряется гибель клеток и прекращается их размножение. Способы подсчета числа бактерий описаны в конце этой главы.
Половое размножение, или генетическая рекомбинация
У бактерий наблюдается и половое размножение, но в самой примитивной форме. Половое размножение бактерий отличается от полового размножения эукариот тем, что у бактерий не образуются гаметы и не происходит слияния клеток. Однако главнейшее событие полового размножения, а именно обмен генетическим материалом, происходит и в этом случае. Этот процесс называется генетической рекомбинацией. Часть ДНК (очень редко вся ДНК) клетки-донора переносится в клетку-реципиент, ДНК которой генетически отличается от ДНК донора. При этом перенесенная ДНК замещает часть ДНК реципиента. В процессе замещения ДНК участвуют ферменты, расщепляющие и вновь соединяющие цепи ДНК. При этом образуется ДНК, которая содержит гены обеих родительских клеток. Такую ДНК называют рекомбинантной. У потомства, или рекомбинантов, наблюдается заметное разнообразие признаков, вызванное смешением генов. Такое разнообразие признаков очень важно для эволюции и является главным преимуществом полового размножения.
Известны три способа получения рекомбинантов. Это — в порядке их открытия — трансформация, конъюгация и трансдукция.