Рис. 14.1. Два раствора, разделенные полупроницаемой мембраной
14.1.5. Осмос и растительная клетка
На рис. 14.2 показаны полупроницаемые мембраны, имеющие особое значение для водного режима растительной клетки. Клеточная стенка обычно полностью проницаема для веществ, находящихся в растворе, так что ее нельзя назвать осмотическим барьером. В клетке находится большая центральная вакуоль, содержимое которой (клеточный сок) способствует поддержанию осмотического давления в клетке. Две очень важные мембраны — это плазматическая мембрана и тонопласт. В своем влиянии на водный режим растений плазматическая мембрана, цитоплазма и тонопласт выступают как единое целое — действуют как одна полупроницаемая мембрана.
Рис. 14.2. Полупроницаемые мембраны типичной вакуолизированной растительной клетки. Обратите внимание, что в нормальных условиях плазматическая мембрана плотно прижата к клеточной стенке
Опыт 14.1. Изучение осмоса в живых растительных клетках
Эпидермис (кожица) лука или молодого ревеня Микроскоп
2 предметных и 2 покровных стекла
Скальпель и пинцет
Дистиллированная вода
1 М раствор сахарозы
2 пипетки с грушей Фильтровальная бумага
Оторвите полоску эпидермиса с нижней поверхности одной из мясистых чешуй луковицы или черешка молодого листа ревеня. Ревень удобнее потому, что клеточный сок у него окрашен, а у лука зато легче отделяется эпидермис. Эпидермис можно содрать, если сначала сделать небольшой надрез, а затем взяться за край надреза рукой или пинцетом и оторвать один слой клеток. Быстро перенесите оторванную полоску эпидермиса на предметное стекло и капните на него две или три капли дистиллированной воды. Осторожно накройте покровным стеклом и посмотрите, как выглядят клетки под микроскопом. Зарисуйте несколько клеток. Отделите другую полоску эпидермиса и повторите всю процедуру, взяв вместо воды 1 М раствор сахарозы. Понаблюдайте за полоской в течение 15 мин при большом увеличении и зарисуйте изменения, которые вы заметите в одной или нескольких типичных клетках. Можно посмотреть, нельзя ли повернуть наблюдаемый процесс вспять. Для этого под покровное стекло капают дистиллированную воду и отмывают препарат от раствора сахарозы; избыток жидкости удаляют фильтровальной бумагой.
На рис. 14.3 показано, как выглядят клетки эпидермиса лука после того, как их подержали разное время в 1 М растворе сахарозы.
Рис. 14.3. Внешний вид эпидермальных клеток лука во время плазмолиза. Полоски эпидермиса оставляли в 1 М растворе сахарозы на разное время
14.1.6. Плазмолиз и тургорное давление
Если клетка находится в контакте с гипертоническим раствором, т.е. с раствором, имеющим более низкий водный потенциал, чем собственное содержимое клетки, вода начинает выходить из нее путем осмоса через плазматическую мембрану. Сначала теряется вода цитоплазмы, а затем через тонопласт выходит вода и из вакуоли. Протопласт, т. е. живое содержимое клетки, окруженное клеточной стенкой, сморщивается и в конце концов отстает от клеточной стенки. Этот процесс называют плазмолизом
, а про такую клетку говорят, что она плазмолизирована. При начинающемся плазмолизе протопласт только-только перестает оказывать какое-либо давление на клеточную стенку, и клетка становится вялой. Вода выходит из протопласта до тех пор, пока его содержимое не приобретает такой же водный потенциал, что и окружающий раствор. После этого клетка перестает сморщиваться дальше.